
MSP

Reference Manual
Version 4.7/7 August 2006

2

Copyright and Trademark Notices

This manual is copyright © 2000-06 Cycling ’74.

MSP is copyright © 1997-2006 Cycling ’74—All rights reserved. Portions of MSP are
based on Pd by Miller Puckette, © 1997 The Regents of the University of California. MSP
and Pd are based on ideas in FTS, an advanced DSP platform © IRCAM.

Max is copyright © 1990-2006 Cycling ’74/IRCAM, l’Institut de Récherche et
Coordination Acoustique/Musique.

VST is a trademark of Steinberg Soft- und Hardware GmbH.

ReWire is a trademark of Propellerhead Software AS.

Credits

MSP Reference: David Zicarelli, Gregory Taylor, Joshua Kit Clayton, jhno, Richard
Dudas, R. Luke DuBois, Andrew Pask

MSP Manual page example patches: R. Luke DuBois, Darwin Grosse, Ben Nevile, Joshua
Kit Clayton, David Zicarelli

Cover Design: Lilli Wessling Hart

Graphic Design: Gregory Taylor

Introduction

3

This reference manual contains information about each individual MSP objects. It includes:

MSP Objects

Contains precise technical information on the workings of each of the built-in and
external objects supplied with MSP, organized in alphabetical order.

MSP Object Thesaurus

Consists of a reverse index of MSP objects, alphabetized by keyword rather than by object
name. Use this Thesaurus when you want to know what object(s) are appropriate for the
task you are trying to accomplish, then look up those objects by name in the Objects
section.

Manual Conventions

The central building block of Max is the object. Names of objects are always displayed in bold
type, like this.

Messages (the arguments that are passed to and from objects) are displayed in plain type, like
this.

In the “See Also” sections, anything in regular type is a reference to a section of either this
manual, the Max Tutorial, Max Topics, or the MSP Tutorial.

Reading the manual online

The table of contents of the MSP documentation is bookmarked, so you can view the
bookmarks and jump to any topic listed by clicking on its names. To view the bookmarks,
choose Bookmarks from the Windows menu. Click on the triangle next to each section to
expand it.

Instead of using the Index at the end of the manual, it might be easier to use Acrobat Reader’s
Search command. We’d like to take this opportunity to discourage you from printing out the
manual unless you find it absolutely necessary.

Other Resources for MSP Users

The help files found in the max-help folder provide interactive examples of the use of each
MSP object.

Introduction

4

The Max/MSP Examples folder contains a number of interesting and amusing
demonstrations of what can be done with MSP.

The Cycling ’74 web site provides the latest updates to our software as well as an extensive list
of frequently asked questions and other support information.

Cycling ’74 runs an on-line Max/MSP discussion where you can ask questions about
programming, exchange ideas, and find out about new objects and examples other users are
sharing. For information on joining the discussion, as well as a guide to third-party Max/MSP
resources, visit http://www.cycling74.com/community

Finally, if you’re having trouble with the operation of MSP, send e-mail to
support@cycling74.com, and we’ll try to help you. We’d like to encourage you to submit
questions of a more conceptual nature (“how do I...?”) to the Max/MSP mailing list, so that
the entire community can provide input and benefit from the discussion. Instead of using the
Index at the end of the manual, it might be easier to use Acrobat Reader’s Find command.
Choose Find from the Tools menu, then type in a word you’re looking for. Find will highlight
the first instance of the word, and Find Again takes you to subsequent instances. We’d like to
take this opportunity to discourage you from printing out the manual unless you find it
absolutely necessary.

Signal subtraction
(inlets reversed) !-~

5

The !-~ object functions just like the -~ object, but the inlet order is reversed.

Input

signal In left inlet: The signal is subtracted from the signal coming into the right
inlet, or a constant value received in the right inlet.

In right inlet: The signal coming into the left inlet or a constant value
received in the left inlet is subtracted from this signal.

float or int In left inlet: An amount to subtract from the signal coming into the right
inlet. If a signal is also connected to the left inlet, a float or int is ignored.

In right inlet: Subtracts the signal coming into the left inlet from this value. If
a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial amount to subtract from the signal coming into the
right inlet. If a signal is connected to the left inlet, the argument is ignored. If
no argument is present, and no signal is connected to the left inlet, the initial
value is 0 by default.

Output

signal The difference between the two inputs.

Examples

-~ with the inlets reversed

See Also

+~ Add signals

Signal division
(inlets reversed) !/~

6

The !/~ object functions just like the /~ object, but the inlet order is reversed.

Note: Division is not a computationally efficient operation. The /~ object is optimized to
multiply a signal coming into the right inlet by the reciprocal of either the initial argument or
an int or float received in the left inlet. However, when two signals are connected, !/~ uses the
significantly more inefficient division procedure.

Input

signal In left inlet: The signal is used as the divisor, to be divided into the signal
coming into the right inlet, or the constant value received in the right inlet.

In right inlet: The signal is divided by a signal coming into the left inlet, or a
constant value received in the left inlet.

float or int In left inlet: A number by which to divide the signal coming into the right
inlet. If a signal is also connected to the left inlet, a float or int is ignored.

In right inlet: The number is divided by the signal coming into the left inlet.
If a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial value by which to divide the signal coming into the
left inlet. If a signal is connected to the right inlet, the argument is ignored. If
no argument is present, and no signal is connected to the right inlet, the
initial value is 1 by default.

Output

signal The ratio of the two inputs, i.e., the right input divided by the left input.

Examples

/~ with the inlets reversed

Signal division
(inlets reversed) !/~

7

See Also

*~ Multiply two signals

Not equal to,
comparison of two signals !=~

8

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or
a constant value received in the right inlet. If it is not equal to the value in the
right inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into
the left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming
into the left inlet. If a signal is also connected to the right inlet, a float or int is
ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left
inlet. 1 is sent out if the signal is not equal to the argument; otherwise, 0 is
sent out. If a signal is connected to the right inlet, the argument is ignored. If
no argument is present, and no signal is connected to the right inlet, the
initial value is 0 by default.

Output

signal If the signal in the left inlet is not equal to the value in the right inlet, 1 is sent
out; otherwise, 0 is sent out.

Examples

Use !=~ to detect the non-zero portion of a signal or envelope

Not equal to,
comparison of two signals !=~

9

See Also

==~ Is equal to, comparison of two signals
<~ Is less than, comparison of two signals
<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
change~ Report signal direction
edge~ Detect logical signal transitions

Divide two signals,
output the remainder %~

10

Input

signal In left inlet: The signal is divided by a signal coming into the right inlet, or a
constant value received in the right inlet, and the remainder is sent out the
outlet.

In right inlet: The signal is used as the divisor, to be divided into the signal
coming into the left inlet, or the constant value received in the left inlet.

float or int In left inlet: The number is divided by the signal coming into the right inlet.
If a signal is also connected to the left inlet, a float or int is ignored.

In right inlet: A number by which to divide the signal coming into the left
inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial value by which to divide the signal coming into the
left inlet. If a signal is connected to the right inlet, the argument is ignored. If
no argument is present, and no signal is connected to the right inlet, the
initial value is 1 by default.

Output

signal When the two signals in the inlets are divided, the remainder is sent out the
outlet. % is called the modulo operator.

Examples

See Also

!/~ Signal division (inlets reversed)

Divide two signals,
output the remainder %~

11

/~ Divide one signal by another
Max Tutorial 8 Doing math in Max

Multiply two signals *~

12

Input

signal In left inlet: The signal is multiplied by the signal coming into the right inlet,
or a constant value received in the right inlet.

In right inlet: The signal is multiplied by the signal coming into the left inlet,
or a constant value received in the left inlet.

float or int In left inlet: A factor by which to multiply the signal coming into the right
inlet. If a signal is also connected to the left inlet, a float or int is ignored.

In right inlet: A factor by which to multiply the signal coming into the left
inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial value by which to multiply the signal coming into the
left inlet. If a signal is connected to the right inlet, the argument is ignored. If
no argument is present, and no signal is connected to the right inlet, the
initial value is 0 by default.

Output

signal The product of the two inputs.

Examples

Scale a signal’s amplitude by a constant or changing value, or by another audio signal

See Also

/~ Divide one signal by another
!/~ Signal division (inlets reversed)
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 8 Synthesis: Tremolo and ring modulation

Signal subtraction -~

13

Input

signal In left inlet: The signal coming into the right inlet or a constant value
received in the right inlet is subtracted from this signal.

In right inlet: The signal is subtracted from the signal coming into the left
inlet, or a constant value received in the left inlet.

float or int In left inlet: Subtracts the signal coming into the right inlet from this value. If
a signal is also connected to the left inlet, a float or int is ignored.

In right inlet: An amount to subtract from the signal coming into the left
inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial amount to subtract from the signal coming into the
left inlet. If a signal is connected to the right inlet, the argument is ignored. If
no argument is present, and no signal is connected to the right inlet, the
initial value is 0 by default.

Output

signal The difference between the two inputs.

Examples

Negative DC offset Subtraction used to invert a signal before adding it in

See Also

+~ Add signals
!-~ Signal subtraction (inlets reversed)

Add signals +~

14

Note: Any signal inlet of any MSP object automatically uses the sum of all signals received in
that inlet. Thus, the +~ object is necessary only to show signal addition explicitly, or to add a
float or int offset to a signal.

Input

signal In left inlet: The signal is added to the signal coming into the right inlet, or a
constant value received in the right inlet.

In right inlet: The signal is added to the signal coming into the right inlet, or a
constant value received in the left inlet.

float or int In left inlet: An offset to add to the signal coming into the right inlet. If a
signal is also connected to the left inlet, a float or int is ignored.

In right inlet: An offset to add to the signal coming into the left inlet. If a
signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial offset to add to the signal coming into the left inlet.
If a signal is connected to the right inlet, the argument is ignored. If no
argument is present, and no signal is connected to the right inlet, the initial
value is 0 by default.

Output

signal The sum of the two inputs.

Examples

Mix signals......or add a DC offset to a signal

Add signals +~

15

See Also

+=~ Signal accumulator
-~ Signal subtraction
!-~ Signal subtraction (inlets reversed)

Signal accumulator +=~

16

Input

signal Each sample of the input is added to all previous samplesto produce a running
sum. For instance, assuming the sum started at 0, an input signal consisting of
1,1,1,1 would produce 1,2,3,4 as an output signal.

bang Resets the sum to 0.

set The word set, followed by a number, sets the sum to that number.

bang In left inlet: Outputs the currently stored value.

set The word set, followed by a number, sets the stored value to that number,
without triggering output.

Arguments

float Optional. Sets the initial value for the sum. The default is 0.

Output

signal Each sample of the output is the sum of all previous input samples.

Examples

See Also

+~ Add signals

Divide one signal
by another /~

17

Note: Division is not a computationally efficient operation. The /~ object is optimized to
multiply a signal coming into the left inlet by the reciprocal of either the initial argument or
an int or float received in the right inlet. However, when two signals are connected, /~ uses the
significantly more inefficient division procedure.

Input

signal In left inlet: The signal is divided by a signal coming into the right inlet, or a
constant value received in the right inlet.

In right inlet: The signal is used as the divisor, to be divided into the signal
coming into the left inlet, or the constant value received in the left inlet.

float or int In left inlet: The number is divided by the signal coming into the right inlet.
If a signal is also connected to the left inlet, a float or int is ignored.

In right inlet: A number by which to divide the signal coming into the left
inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial value by which to divide the signal coming into the
left inlet. If a signal is connected to the right inlet, the argument is ignored. If
no argument is present, and no signal is connected to the right inlet, the
initial value is 1 by default.

Output

signal The ratio of the two inputs, i.e., the left input divided by the right input.

Examples

It is more computationally efficient to use an equivalent multiplication when possible

Divide one signal
by another /~

18

See Also

!/~ Signal division (inlets reversed)
*~ Multiply two signals
%~ Divide two signals, output the remainder

Is less than,
comparison of two signals <~

19

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or
a constant value received in the right inlet. If it is less than the value in the
right inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into
the left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming
into the left inlet. If a signal is also connected to the right inlet, a float or int is
ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left
inlet. 1 is sent out if the signal is less than the argument; otherwise, 0 is sent
out. If a signal is connected to the right inlet, the argument is ignored. If no
argument is present, and no signal is connected to the right inlet, the initial
value is 0 by default.

Output

signal If the signal in the left inlet is less than the value in the right inlet, 1 is sent
out; otherwise, 0 is sent out.

Examples

Convert any signal to only 1 and 0 values

See Also

<=~ Is less than or equal to, comparison of two signals

Is less than,
comparison of two signals <~

20

>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals

Is less than or equal to,
comparison of two signals <=~

21

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or
a constant value received in the right inlet. If it is less than or equal to the
value in the right inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into
the left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming
into the left inlet. If a signal is also connected to the right inlet, a float or int is
ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left
inlet. 1 is sent out if the signal is less than or equal to the argument; otherwise,
0 is sent out. If a signal is connected to the right inlet, the argument is
ignored. If no argument is present, and no signal is connected to the right
inlet, the initial value is 0 by default.

Output

signal If the signal in the left inlet is less than or equal to the value in the right inlet,
1 is sent out; otherwise, 0 is sent out.

Examples

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals

Is less than or equal to,
comparison of two signals <=~

22

>=~ Is greater than or equal to, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals

Is equal to,
comparison of two signals ==~

23

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or
a constant value received in the right inlet. If it is equal to the value in the
right inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into
the left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming
into the left inlet. If a signal is also connected to the right inlet, a float or int is
ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left
inlet. 1 is sent out if the signal is equal to the argument; otherwise, 0 is sent
out. If a signal is connected to the right inlet, the argument is ignored. If no
argument is present, and no signal is connected to the right inlet, the initial
value is 0 by default.

Output

signal If the signal in the left inlet is equal to the value in the right inlet, 1 is sent out;
otherwise, 0 is sent out.

Examples

Detect when a signal equals a certain value, or when two signals equal each other

Is equal to,
comparison of two signals ==~

24

See Also

<~ Is less than, comparison of two signals
<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
change~ Report signal direction
edge~ Detect logical signal transitions

Is greater than,
comparison of two signals >~

25

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or a
constant value received in the right inlet. If it is greater than the value in the
right inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into
the left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming
into the left inlet. If a signal is also connected to the right inlet, a float or int is
ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left
inlet. 1 is sent out if the signal is greater than the argument; otherwise, 0 is
sent out. If a signal is connected to the right inlet, the argument is ignored. If
no argument is present, and no signal is connected to the right inlet, the
initial value is 0 by default.

Output

signal If the signal in the left inlet is greater than the value in the right inlet, 1 is sent
out; otherwise, 0 is sent out.

Examples

Convert any signal to only 1 and 0 values

See Also

<~ Is less than, comparison of two signals

Is greater than,
comparison of two signals >~

26

<=~ Is less than or equal to, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
sah~ Sample and hold

Is greater than or equal to,
comparison of two signals >=~

27

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or
a constant value received in the right inlet. If it is greater than or equal to the
value in the right inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into
the left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming
into the left inlet. If a signal is also connected to the right inlet, a float or int is
ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left
inlet. 1 is sent out if the signal is greater than or equal to the argument;
otherwise, 0 is sent out. If a signal is connected to the right inlet, the argument
is ignored. If no argument is present, and no signal is connected to the right
inlet, the initial value is 0 by default.

Output

signal If the signal in the left inlet is greater than or equal to the value in the right
inlet, 1 is sent out; otherwise, 0 is sent out.

Examples

See Also

<~ Is less than, comparison of two signals
<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals

Is greater than or equal to,
comparison of two signals >=~

28

==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
sah~ Sample and hold

Two-dimensional
wavetable 2d.wave~

29

Input

signal In left inlet: Input signal values progressing from 0 to 1 are used to scan a
specified range of samples in a buffer~ object. The output of a phasor~ can be
used to control 2d.wave~ as an oscillator, treating the range of samples in the
buffer~ as a repeating waveform. However, note that when changing the
frequency of a phasor~ connected to the left inlet of 2d.wave~, the perceived
pitch of the signal coming out of 2d.wave~ may not correspond exactly to the
frequency of phasor~ itself if the stored waveform contains multiple or partial
repetitions of a waveform. You can invert the phasor~ to play the waveform
backwards.

In 2nd inlet: Input signal values progressing from 0 to 1 are used to determine
which of the row(s) specified by the rows message will be used for playback.You
can invert the phasor~ to reverse the order in which row(s) are played.

In 3rd inlet: The start of the waveform as a millisecond offset from the
beginning of a buffer~ object’s sample memory.

In 4th inlet: The end of the waveform as a millisecond offset from the
beginning of a buffer~ object’s sample memory.

float or int In 3rd or 4th inlets: Numbers can be used instead of signal objects to control
the start and end points of the waveform, provided a signal is not connected to
the inlet that receives the number.

rows The word rows, followed by an int, sets the number of rows a given range of an
audio file will be divided into. The phase input signal value received in the 2nd
inlet of 2d.wave~ determines which row(s) are used for playback. The default
value is 0.

set The word set, followed by a symbol, sets the buffer~ used by 2d.wave~ for its
stored waveform. The symbol can optionally be followed by two values setting
new waveform start and end points. If the values are not present, the default
start and end points (the start and end of the sample) are used. If signal objects
are connected to the start and/or end point inlets, the start and/or end point
values are ignored.

Two-dimensional
wavetable 2d.wave~

30

Arguments

symbol Obligatory. Names the buffer~ object whose sample memory is used by
2d.wave~ for its stored waveform. Note that if the underlying data in a buffer~
changes, the signal output of 2d.wave~ will change, since it does not copy the
sample data in a buffer~. 2d.wave~ always uses the first n channels of a multi-
channel buffer~, where n is the number of the 2d.wave~ object’s output
channels. The default number of channels, set by the third argument to the
2d.wave~ object, is 1.

float or int Optional. After the buffer~ name argument, you can type in values for the
start and end points of the waveform, as millisecond offsets from the
beginning of a buffer~ object’s sample memory. By default the start point is 0
and the end point is the end of the sample. If you want to set a non-zero start
point but retain the sample end as the waveform end point, use only a single
typed-in argument after the buffer~ name. If a signal is connected to the start
point (middle) inlet, the initial waveform start point argument is ignored. If a
signal is connected to the end point (right) inlet, the initial waveform end point
is ignored. The number of channels in the buffer~ file and the number of rows
to be used may also be specified.

int Optional. Sets the number of output channels, which determines the number
of outlets that the 2d.wave~ object will have. The maximum number of
channels is 8. The default is 1. If the audio file being played has more output
channels than the 2d.wave~ object, higher-numbered channels will not be
played. If the audio file has fewer channels, the signals coming from the extra
outlets of 2d.wave~ will be 0.

Output

signal The portion of the buffer~ specified by the 2d.wave~ object’s start and end
points is scanned by signal values ranging from 0 to 1 in the 2d.wave~ object’s
inlet, and the corresponding sample value from the buffer~ is sent out the
2d.wave~ object’s outlet. If the signal received in the object’s inlet is a repeating
signal such as a sawtooth wave from a phasor~, the resulting output will be a
waveform (excerpted from the buffer~) repeating at the frequency
corresponding to the repetition of the input signal.

Two-dimensional
wavetable 2d.wave~

31

Examples

Loop through part of a sample, treating it as a variable-size wavetable

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
phasor~ Sawtooth wave generator
play~ Position-based sample playback
wave~ Variable-size wavetable
Tutorial 15 Sampling: Variable-length wavetable

Absolute value
of a signal abs~

32

Input

signal Any signal.

Arguments

None.

Output

signal A signal consisting of samples which are the absolute (i.e., non-negative)
value of the samples in the input signal.

Examples

Convert negative signal values to positive signal values

See Also

avg~ Signal average

Signal
arc-cosine function acos~

33

Input

signal Input to a arc-cosine function.

Arguments

None.

Output

signal The arc-cosine of the input in radians.

Examples

 Using acos~ to create an inverse linear ramp in radians

See Also

acosh~ Signal hyperbolic arc-cosine function
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function

Signal hyperbolic
arc-cosine function acosh~

34

Input

signal Input to a hyperbolic arc-cosine function.

Arguments

None.

Output

signal The hyperbolic arc-cosine of the input.

Examples

See Also

acos~ Signal arc-cosine function
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function

Audio input
and on/off adc~

35

Input

int A non-zero number turns on audio processing in all loaded patches. 0 turns
off audio processing in all loaded patches.

open Opens the DSP Status window.

set The word set, followed by two numbers, sets the logical input channel for
one of the object's signal outlets. The first number specifies the outlet
number, where 1 is the leftmost outlet. The second number specifies the
logical input channel (from 1 to 512). If the second number is 0, the outlet
sends out the zero signal.

start Turns on audio processing in all loaded patches.

stop Turns off audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this adc~ is located,
and in subpatches of that patch. Turns off audio processing in all other
patches.

wclose Closes the DSP Status window if it is open

(mouse) Double-clicking on adc~ opens the DSP Status window.

Arguments

int Optional. You can create a adc~ object that uses one or more audio input
channel numbers between 1 and 512. These numbers refer to logical
channels and can be dynamically reassigned to physical device channels of
a particular driver using either the DSP Status window, its I/O Mappings
subwindow, or an adstatus object with an input keyword argument. If the
computer’s built-in audio hardware is being used, there will be two input
channels available. Other audio drivers and/or devices may have more than
two channels. If no argument is typed in, adc~ will have two outlets,
initially set to logical input channels 1 and 2.

Output

signal The signal arriving at the computer’s input is sent out, one channel per
outlet. If there are no typed-in arguments, the channels are 1 and 2,

Audio input
and on/off adc~

36

numbered left-to-right; otherwise the channels are in the order specified by
the arguments.

Examples

Audio input for processing and recording

See Also

adstatus Access audio driver output channels
ezadc~ Audio on/off; analog-to-digital converter
dac~ Audio output and on/off
Audio I/O Audio input and output with MSP
Tutorial 13 Sampling: Recording and playback

Access audio driver
output channel adoutput~

37

Input

set The word set, followed by two numbers, assigns an audio driver output
channel to a signal outlet of the adoutput~ object. The first number is the
index of the outlet, where a value of 1 refers to the left outlet. The second
number is the index of the audio driver output device channel where 1
refers to the first channel. If the second number if 0, the specified outlet is
turned off and outputs a zero signal.

Arguments

int Optional. The arguments specify output channels of the current
audiodriver. There is no limit to the number of channels you can specify.
By default, adoutput~ creates two outlets and assigns the audio output from
channels 1 and 2 of the current audiodriver to them. Note that these
channel numbers are not the same as the logical channel numbers used by
the dac~ and adc~ objects, but represent the “physical” outputs of the driver
after any remapping has taken place. You configure the relationship
between logical dac~ channels and the audiodriver's real channels with the
I/O Mappings subwindow of the DSP Status window.

Output

signal Each outlet of adoutput~ outputs a signal from the assigned audiodriver
channel, delayed by the number of samples of the current signal vector
size.

Examples

Capture the output of physical DAC channels to record/re-process the output of your patch

Access audio driver
output channel adoutput~

38

See Also

adstatus Report and control audio driver settings
dac~ Audio output and on/off

ADSR envelope
generator adsr~

39

Input

signal In left inlet: Any non-zero value x will trigger an envelope with amplitude
x. Like an adsr~ triggered by an input float, a zero value represents “note-
off” and will begin the release stage. Unlike the event-triggered model, a
signal-triggered adsr~ must receive a zero before it will retrigger.

In second inlet: sets the envelope’s attack time, in milliseconds.

In third inlet: sets the envelope’s decay time, in milliseconds.

In fourth inlet: sets the envelope’s sustain level, as a factor of the
amplitude. For example, a value of 0.5 means the sustain level will be half
of the amplitude height.

In fifth inlet: sets the envelope’s release time, in milliseconds.

int or float In left inlet: Like an adsr~ object triggered by a signal input, an int or float
value triggers an envelope with the given amplitude. The envelope will
sustain until a zero is input to trigger the release stage, or until another
non-zero float retriggers the envelope.

In second inlet: sets the envelope’s attack time, in milliseconds.

In third inlet: sets the envelope’s decay time, in milliseconds.

In fourth inlet: sets the envelope’s sustain level, as a factor of the
amplitude. For example, a value of 0.5 means the sustain level will be half
of the amplitude height.

In fifth inlet: sets the envelope’s release time, in milliseconds.

retrigger The word retrigger, followed by a float, sets the amount of time taken to
ramp down to zero in the event of a retrigger while the envelope is active
(The default is 10 milliseconds). This ramping prevents clicking.

legato The word legato, followed by a 0 or a non-zero number, disables or enables
legato mode. If legato mode is enabled, the envelope will not drop to zero
in the event of a retrigger while the envelope is active—instead, the
envelope ramps to the new amplitude over the attack period.

maxsustain The word maxsustain, followed by a float, sets the maximum amount of time
that the envelope will remain in the sustain stage. A negative number sets

ADSR envelope
generator adsr~

40

no maximum—the envelope will remain forever in the sustain stage until a
note-off is received. To create a simple three-stage sustainless envelope (an
ADR), you can use the message maxsustain 0.0.

Arguments

float Optional. Four float arguments specify the initial values for the attack,
decay, sustain and release parameters.

Output

signal Left outlet: the envelope.

Middle outlet: signals the beginning of an envelope by sending 1 when in
the attack, decay, or sustain stages and 0 otherwise (release, retrigger, or
inactive). You can use this outlet in conjunction with the sah~ object to
synchronize pitch (or other information) with the beginning of an
envelope with sample accuracy.

message The right outlet sends mute messages suitable for managing internal poly~
instance muting with the thispoly~ object.

message The fourth outlet responds to query messages for the various attributes (ie
getattack).

ADSR envelope
generator adsr~

41

Examples

Use adsr~ to manage the polyphony and muting for a sampler or synthesizer patch internal
to a poly~ object

See Also

function Graphical breakpoint function editor
line~ Generate signal ramp or envelope
techno~ Signal-driven sequencer
zigzag~ A jumpy line~

Report and control
audio driver settings adstatus

42

The adstatus object controls different audio settings depending on the argument you use.
The possible arguments are listed in the Arguments section below.

Input

bang In left inlet: Reports the current state of the setting. In many cases,
messages are sent out the adstatus object's left outlet to set a pop-up menu
object to display the current setting with a set message. In these cases, the
numerical value of the setting is sent out the adstatus object's right outlet.
The exact behaviors are listed in the Output section below.

override In left inlet: The word override, followed by a 1, turns on override mode for
the setting associated with the object. When override mode is enabled, any
change to the setting is not saved in the MSP Preferences file. The message
override 0 turns override mode off. By default, override is off for all settings.
However, some settings are specific to audio drivers and may not be saved
by the driver.

int In left inlet: Changes the setting. In most cases, the number will
correspond to the index of the menu item whose value was set by the bang
message to adstatus.

In right inlet: If the adstatus object is used with the input, iovs, output,
sigvs, sr settings, an int in the right inlet sets the value numerically rather
than by using a menu index (see the reset or loadbang message below). For all
other settings, a number in the right inlet behaves identically to one in the
left inlet.

set In left inlet: The word set, followed by a number between 1 and 512,
changes the logical channel associated with an adstatus input or adstatus
output object. The current real audio driver input or output channel set for
the new logical channel is sent out the object's outlets.

float Same as int.

reset or loadbang For adstatus objects that work with pop-up menus, the reset or loadbang
messages output the necessary messages to make a pop-up menu that can
control the adstatus object. The clear message is sent out first, followed by
an append message for each menu item, followed by a set message to set the
displayed value of the menu based on the current value of the setting.

Report and control
audio driver settings adstatus

43

Argument Behavior

cpu None.

cpulimit Sets the percentage of CPU utilization above which audio
processing will be suspended. A value of 0 turns off CPU
utilization limiting.

driver The number is interpreted as an index into the menu of
available audio drivers generated by adstatus driver. The
number loads the driver object corresponding to the menu
index.

info None.

input The number is interpreted as an index into the menu of
available audio input channels generated by adstatus input.
The number sets the object's assigned logical channel to
accept input from the driver's channel corresponding to the
menu index.

iovs The number is interpreted as an index into the menu of
available I/O vector sizes generated by adstatus iovs. The
number sets the driver's I/ O vector size to the value of the
item at the specified menu index.

latency None.

numinputs None.

numoutputs None.

optimize 0 turns optimize mode off, 1 turns optimize mode on.

option The number is interpreted as an index into the menu of
choices for the specified option generated by adstatus
option. The number sets the option to the value that
corresponds with the menu index.

optionname None.

output The number is interpreted as an index into the menu of
available audio output channels generated by adstatus
output. The number sets the object's assigned logical
channel to output to the driver's channel corresponding to
the menu index.

overdrive 0 turns overdrive mode off, 1 turns overdrive mode on.

Report and control
audio driver settings adstatus

44

sigvs The number is interpreted as an index into the menu of
available signal vector sizes generated by adstatus sigvs. The
number sets the current signal vector size to the value of the
item at the specified menu index.

sr The number is interpreted as an index into the menu of
available sampling rates generated by adstatus sr. The
number sets the current sampling rate to the value of the
item at the specified menu index.

switch 0 turns the DSP off, 1 turns it on.

takeover 0 turns scheduler in audio interrupt mode off, 1 turns it on.

timecode 0 turns timecode output off, 1 turns it on.

Arguments

various Obligatory. The first argument is a symbol that specifies the setting to be
controlled by the adstatus object. Some settings require an additional int
argument. The possible settings are:

cpu Reports current CPU utilization.

cpulimit Reports and sets the CPU utilization limit as a percentage
from 0-100.

driver Lists the available audio drivers and allows the current one
to be changed.

info Reports the number of function calls and signals used in the
top level DSP chain.

input Requires an additional argument specifying a logical
channel number (used by the adc~ object) between 1 and
512. Lists the available audio driver input channels and
allows the current setting to be changed.

iovs Reports the available I/O vector sizes of the current audio
driver and allows the current I/O vector size setting to be
changed.

latency If supported by the audio driver, reports the input and
output latencies of the driver in samples.

numinputs Reports the number of input channels of the current audio
driver.

Report and control
audio driver settings adstatus

45

numoutputs Reports the number of output channels of the current audio
driver.

optimize Turns the optimization flag on or off. On the Macintosh,
this is used to control the use of Altivec (G4 processor)
optimizations.

option Requires an additional argument specifying the option
number (starting at 1). If the current audio driver uses the
numbered option, reports the available choices for setting
the value of the option.

optionname Requires an additional argument specifying the option
number (starting at 1). If the current audio driver uses the
numbered option, the name of the option is reported.

output Requires an additional argument specifying a logical
channel number (used by the dac~ object) between 1 and
512. Lists the available audio driver output channels and
allows the current setting to be changed.

overdrive Controls the setting of overdrive mode (where the scheduler
runs in a high-priority interrupt).

sigvs Reports the available signal vector sizes and allows the
current signal vector size setting to be changed.

sr Reports the available sampling rates and allows the current
sampling rate setting to be changed.

switch Turns the DSP on or off.

takeover Controls the setting of scheduler in audio interrupt mode.

timecode If supported by the audio driver, reports the current
timecode value.

Output

various Out left outlet: For many settings, a series of messages intended to set up a
pop-up menu object are sent out the left outlet when the reset or loadbang
message is received by adstatus. See the reset message in the Input section
for more details.

The following settings have a menu-style output: driver, input, iovs, optimize,
output, sigvs, sr, switch, and takeover.

Report and control
audio driver settings adstatus

46

set Out left outlet: When a bang message is received or when the value of the
setting that has a menu-style output is changed, the word set, followed by a
number with a menu item index (starting at 0) is sent out. Here are details
of outputs from the left outlet for specific settings with menu-style
outputs:

driver Lists all current audio driver choices.

input Lists audio input channels for the audio driver currently in
use.

iovs Lists I/O vector sizes for the audio driver currently in use.

optimize Creates an On/Off menu for use with this setting.

option Creates a list of choices for the specified option.

optionname Sets a menu that names the specified option. Intended for
use with a pop-up menu object in label mode.

output Lists audio output channels for the audio driver currently in
use.

overdrive Creates an On/Off menu for use with this setting.

sigvs Lists signal vector sizes for the audio driver currently in use.

sr Lists sampling rates available for the audio driver currently
in use.

switch Creates an On/Off menu for turning the DSP on and off.

takeover Creates an On/Off menu for switching scheduler in audio
interrupt mode.

int or float Out left outlet: For objects that don't use a menu-style output, the current
value of the setting is sent out the left outlet. Here are details for specific
settings:

cpu Reports CPU utilization as a percentage (normally from 0
to 100).

cpulimit Reports the current CPU utilization limit.

info Reports the number of function calls used in the top-level
DSP chain.

latency If supported by the audio driver, reports the input latency of
the audio driver.

Report and control
audio driver settings adstatus

47

numinputs Reports the number of inputs in the current audio driver.

numoutputs Reports the number of outputs in the current audio driver.

timecode If supported by the audio driver, reports the current
timecode as a list in the following format:

1. time code sample count most significant word

2. time code sample count least significant word

3. time code subframes

4. time code flags

5. time code frame rate

int or float Out right outlet: Here are the objects that output something out the value
outlet of the object:

info Reports the number of signals used in the top-level DSP
chain.

iovs Reports the current I/O vector size.

sigvs Reports the current signal vector size.

option Reports the menu item index of the option's current value.

switch Reports the current on/off setting of the DSP.

takeover Reports the current on/off setting of takeover mode.

input Reports the current input channel for the specified logical
channel.

output Reports the current output channel for the specified logical
channel.

overdrive Reports the current on/off setting of overdrive mode.

sr Reports the current sampling rate.

numinputs Reports the number of inputs in the current audio driver
(same as left outlet).

numoutputs Reports the number of outputs in the current audio driver
(same as left outlet).

overdrive Reports the current on/off setting of overdrive mode.

Report and control
audio driver settings adstatus

48

Examples

adstatus lets you monitor and change audio parameters from within your patch.

See Also

dspstate~ Report current DSP setting
adoutput~ Access audio driver output channels
Audio I/O Audio input and output with MSP

Allpass filter allpass~

49

Input

signal In left inlet: Any signal to be filtered. The filter mixes the current input
sample with an earlier output sample, according to the formula:

yn = -gxn + xn-(DR/1000) +gyn-(DR/1000)

where R is the sampling rate and D is a delay time in milliseconds.

In middle inlet: Delay time (D) in milliseconds for a past output sample to
be added into the current output.

In right inlet: Gain coefficient (g), for scaling the amount of the input and
output samples to be sent to the output.

float or int The filter parameters in the middle and right inlets may be specified by a
float or int instead of a signal. If a signal is also connected to the inlet, the
float or int is ignored.

clear Clears the allpass~ object’s memory of previous outputs, resetting them to
0.

Arguments

float Optional. Up to four numbers, to set the maximum delay time and initial
values for the delay time D and gain coefficient g. If a signal is connected
to a given inlet, the coefficient supplied as an argument for that inlet is
ignored. If no arguments are present, the maximum delay time defaults to
10 milliseconds.

Output

signal The filtered signal.

Allpass filter allpass~

50

Examples

Short delay with feedback to blur the input sound, or longer delay for discrete echoes

See Also

biquad~ Two-pole two-zero filter
comb~ Comb filter
lores~ Resonant lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control

Signal
arc-sine function asin~

51

Input

signal Input to a arc-sine function.

Arguments

None.

Output

signal The arc-sine of the input in radians.

Examples

asin~ lets you create linear ramps in radians in the range -�/2—�/2

See Also

asinh~ Signal hyperbolic arc-sine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function

Signal hyperbolic
arc-sine function asinh~

52

Input

signal Input to a hyperbolic arc-sine function.

Arguments

None.

Output

signal The hyperbolic arc-sine of the input in radians.

Examples

See Also

asin~ Signal arc-sine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function

Signal arc-tangent
function (two variables) atan2~

53

Input

signal In left input: y value input to an arc-tangent function.

In right input: x value input to an arc-tangent function.

Arguments

None.

Output

signal The arc-tangent input values (i.e. Arc-tangent(y/x)).

Examples

atan2~ Calculate the angle of two points around an origin (0, 0), in radians

See Also

atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
tanx~ Signal tangent function

Signal
arc-tangent function atan~

54

Input

signal Input to a arc-tangent function.

Arguments

None.

Output

signal The arc-tangent of the input.

Examples

atan~ performs the arctangent function on a signal

See Also

atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

Signal hyperbolic
arc-tangent function atanh~

55

Input

signal Input to a hyperbolic arc-tangent function.

Arguments

None.

Output

signal The hyperbolic arc-tangent of the input.

Examples

See Also

atan~ Signal arc-tangent function
atan2~ Signal arc-tangent function (two variables)
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

Convert linear amplitude to a
signal-rate deciBel value atodb~

56

Input

signal A signal representing a linear amplitude value. It is converted to a
gain/attenuation, expressed in deciBels, and output as a signal.

Arguments

None.

Output

signal The gain or attenuation from unity gain, expressed in deciBels, is output as a
signal.

Examples

Old-fashioned, no-nonsense numerical conversion.

See Also

expr Evaluate a mathematical expression
atodb Convert linear amplitude to a deciBel value
dbtoa Convert a deciBel value to linear amplitude
dbtoa~ Convert a deciBel value to linear amplitude at signal rate

Multi-mode
signal average average~

57

Input

signal The signal to be averaged.

int Sets the interval in samples used for each of the three modes of signal
averaging. The default value is 100.

bipolar Sets bipolar averaging mode (default). In bipolar mode, the sample values
are averaged.

absolute Sets absolute averaging mode. This mode averages the absolute value of the
incoming samples.

rms Sets root mean square (RMS) averaging mode. This mode computes the
square root of the average of the sample values squared.

The RMS mode of the average~ object is more CPU-intensive than the
bipolar and absolute modes.While RMS values are often used to measure
signal levels, the absolute mode often works as well as the RMS mode in
many level-detection tasks.

Arguments

int Optional. Sets the maximum averaging interval in samples. The default
value is 100.

symbol Optional. Sets the averaging mode, as defined above. The default is bipolar.

Output

float The running average value of the input signal averaged over the specified
number of samples.

Examples

Running average of a signal across n samples

Multi-mode
signal average average~

58

See Also

avg~ Signal average
meter~ Visual peak level indicator

Signal average avg~

59

Input

bang Triggers a report of the average (absolute) amplitude of the signal received
since the previous bang, and clears the avg~ object’s memory in preparation for
the next report.

signal The signal to be averaged.

Arguments

None.

Output

float When bang is received in the inlet, avg~ reports the average amplitude of the
signal received since the previous bang.

Examples

Report the average (absolute) amplitude of a signal

See Also

average~ Multi-mode signal average
avg~ Signal average
meter~ Visual peak level indicator

Define a switchable part
of a signal network begin~

60

Input

None.

Arguments

None.

Output

signal begin~ outputs a constant signal of 0. It is used to designate the beginning
of a portion of a signal network that you wish to be turned off when it’s
not needed. You connect the outlet of begin~ to the signal inlet of another
object to define the beginning of a signal network that will eventually pass
through a gate~ or selector~. One begin~ can be used for each gate~ or
selector~ signal inlet. When the signal coming into gate~ or selector~ is
shut off, no processing occurs in any of the objects in the signal network
between the begin~ and the gate~ or selector~.

Examples

See Also

selector~ Assign one of several inputs to an outlet
gate~ Route a signal to one of several outlets
Tutorial 5 Fundamentals: Turning signals on and off

Two-pole,
two-zero filter biquad~

61

Input

signal In left inlet: Signal to be filtered. The filter mixes the current input sample
with the two previous input samples and the two previous output samples
according to the formula: yn = a0xn + a1xn-1 + a2xn-2 - b1yn-1 - b2yn-2.

In 2nd inlet: Amplitude coefficient a0, for scaling the amount of the
current input to be passed directly to the output.

In 3rd inlet: Amplitude coefficient a1, for scaling the amount of the
previous input sample to be added to the output.

In 4th inlet: Amplitude coefficient a2, for scaling the amount of input
sample n-2 to be added to the output.

In 5th inlet: Amplitude coefficient b1, for scaling the amount of the
previous output sample to be added to the current output.

In right inlet: Amplitude coefficient b2, for scaling the amount of output
sample n-2 to be added to the current output.

float The coefficients in inlets 2 to 6 may be specified by a float instead of a
signal. If a signal is also connected to the inlet, the float is ignored.

list The five coefficients can be provided as a list in the left inlet. The first
number in the list is coefficient a0, the next is a1, and so on. If a signal is
connected to a given inlet, the coefficient supplied in the list for that inlet
is ignored.

clear Clears the biquad~ object’s memory of previous inputs and outputs,
resetting xn-1, xn-2, yn-1, and yn-2 to 0.

Arguments

float Optional. Up to five numbers, to set initial values for the coefficients a0,
a1, a2, b1, and b2. If a signal is connected to a given inlet, the coefficient
supplied as an argument for that inlet is ignored.

Output

signal The filtered signal.

Two-pole,
two-zero filter biquad~

62

Examples

Filter coefficients may be supplied as numerical values or as varying signals

See Also

buffir~ Buffer-based FIR filter
cascade~ Cascaded series of biquad filters
comb~ Comb filter
filtergraph~ Graphical filter editor
lores~ Resonant lowpass filter
onepole~ Single-pole lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control

Bitwise and
of floating point signals bitand~

63

The bitand~ object performs a bitwise intersection (a bitwise “and”) on two incoming
floating-point signals as either raw 32-bit data or as integer values. The output is a
floating-point signal composed of those bits which are 1 in both numbers.

Input

signal In left inlet: The floating-point signal is compared, in binary form, with
the floating-point signal in the right inlet. The signal can be treated as
either a floating-point signal or as an integer.

In right inlet: The floating-point signal to be compared with the signal in
the left inlet. The signal can be treated as either a floating-point signal or
as an integer.

The raw floating-point signal bit values are expressed in the following
form:

<1 sign bit> <8 exponent bits> <23 mantissa bits>

int In right inlet: An integer value can be used as a bitmask when supplied to
the right inlet of the bitand~ object, provided that the proper mode is set.

bits In left inlet: The word bits, followed by a list containing 32 ones or zeros,
specifies a bitmask to be used by bitand~. Alternately, a bitmask value can
be set by using an int value in the right inlet.

mode In left inlet: The word mode, followed by a zero or one, specifies whether
the floating signal or floating-point values will be processed as a raw 32-bit
floating-point value or converted to an integer value for the bitwise
operation. The modes of operation are:

Mode Description

0 Treat both floating-point signal inputs as raw 32-bit values
(default).

1 Convert both floating-point signal inputs to integer values.

2 Treat the floating-point signal in the left inlet as a raw 32-
bit value and treat the value in the right inlet as an integer.

3 Convert the floating-point signal in the left inlet to an
integer and treat the right input as a raw 32-bit value.

Bitwise and
of floating point signals bitand~

64

Note: If you convert the floating-point signal input to an int and then
convert it back, the resulting floating-point value will retain only 24 bits
of integer resolution.

Arguments

int Optional. Sets the bitmask to be used by the bitand~ object. The default is
0. An integer value can be used as a bitmask regardless of the mode; the
binary representation of this integer is the bitmask.

int Optional. Specifies whether the floating-point signal or floating-point
values will be processed as raw 32-bit floating-point values or converted to
integer values for the bitwise operation. The modes of operation are:

Mode Description

0 Treat both floating-point signal inputs as raw 32-bit values
(default).

1 Convert both floating-point signal inputs to integer values.

2 Treat the floating-point signal in the left inlet as a raw 32-
bit value and the value in the right inlet as an integer.

3 Convert the floating-point signal in the left inlet to an
integer and treat the right input as a raw 32-bit value.

Output

signal The two floating-point signals or ints received in the inlets are compared,
one bit at a time. If a bit is 1 in both numbers, it will be 1 in the output
number, otherwise it will be 0 in the output floating-point signal.

Examples

Bitwise and
of floating point signals bitand~

65

See Also

bitshift~ Bitwise shifting of a floating-point signal
bitor~ Bitwise “or” of floating-point signals
bitxor~ Bitwise “exclusive or” of floating-point signals
bitnot~ Bitwise inversion of a floating-point signal

Bitwise inversion
of a floating point signal bitnot~

66

The bitnot~ object performs a bitwise inversion on an incoming floating-point signal as
either raw 32-bit data or as an integer value. All bit values of 1 are set to 0, and vice versa.

Input

signal The bitnot~ object can perform bit inversion on either a floating-point
signal as bits, or as an integer.

Floating-point signal bit values are expressed in the following form:
<1 sign bit> <8 exponent bits> <23 mantissa bits>

mode In left inlet: The word mode, followed by a zero or one, specifies whether
the floating signal or floating-point value will be processed as a raw 32-bit
floating-point value or converted to an integer value for bit inversion. The
modes of operation are:

Mode Description

0 Treat floating-point signal input as a raw 32-bit value
(default).

1 Convert the floating-point signal input to an integer value.

Note: If you convert the floating-point signal input to an int and then
convert it back, the resulting floating-point value will retain only 24 bits
of integer resolution.

Arguments

int Optional. Specifies whether the floating-point signal or floating-point
value will be processed as a raw 32-bit floating-point value or converted to
an integer value for bit inversion. The modes of operation are:

Mode Description

0 Treat floating-point signal input as a raw 32-bit value
(default).

1 Convert the floating-point signal input to an integer value.

Output

signal The resulting bit inverted floating-point signal.

Bitwise inversion
of a floating point signal bitnot~

67

Examples

See Also

bitshift~ Bitwise shifting of a floating-point signal
bitor~ Bitwise “or” of floating-point signals
bitxor~ Bitwise “exclusive or” of floating-point signals
bitand~ Bitwise “and” of floating-point signals

Bitwise or
of floating point signals bitor~

68

The bitor~ object performs a bitwise “or” on two incoming floating-point signals as either
raw 32-bit data or as integer values. The bits of both incoming signals are compared, and a
1 is output if either of the two bit values is 1. The output is a floating-point signal
composed of the resulting bit pattern.

Input

signal In left inlet: The floating-point signal is compared, in binary form, with
the floating-point signal in the right inlet. The signal can be treated as
either a floating-point signal or as an integer.

In right inlet: The floating-point signal to be compared with the signal in
the left inlet. The signal can be treated as either a floating-point signal or
as an integer.

The raw floating-point signal bit values are expressed in the following
form:

<1 sign bit> <8 exponent bits> <23 mantissa bits>

int In right inlet: An integer value can be used as a bitmask when supplied to
the right inlet of the bitor~ object, provided that the proper mode is set.

bits In left inlet: The word bits, followed by a list containing 32 ones or zeros,
specifies a bitmask to be used by bitor~. Alternately, a bitmask value can be
set by using an int value in the right inlet.

mode In left inlet: The word mode, followed by a zero or one, specifies whether
the floating signal or floating-point values will be processed as raw 32-bit
floating-point values or converted to integer values for the bitwise
operation. The modes of operation are:

Mode Description

0 Treat both floating-point signal inputs as raw 32-bit values
(default).

1 Convert both floating-point signal inputs to integer values.

2 Treat the floating-point signal in the left inlet as a raw 32-
bit value and the value in the right inlet as an integer.

3 Convert the floating-point signal in the left inlet to an
integer and treat the right input as a raw 32-bit value.

Bitwise or
of floating point signals bitor~

69

Note: If you convert the floating-point signal input to an int and then
convert it back, the resulting floating-point value will retain only 24 bits
of integer resolution.

Arguments

int Optional. Sets the bitmask to be used by the bitor~ object. The default is 0.
An integer value can be used as a bitmask regardless of the mode; the
binary representation of this integer is the bitmask.

int Optional. Specifies whether the floating-point signal or floating-point
values will be processed as raw 32-bit floating-point values or converted to
integer values for the bitwise operation. The modes of operation are:

Mode Description

0 Treat both floating-point signal inputs as raw 32-bit values
(default).

1 Convert both floating-point signal inputs to integer values.

2 Treat the floating-point signal in the left inlet as a raw 32-
bit value and the value in the right inlet as an integer.

3 Convert the floating-point signal in the left inlet to an
integer and treat the right input as a raw 32-bit value.

Output

signal The two floating-point signals or ints received in the inlets are compared,
one bit at a time. If a bit is 1 in either one of the numbers, it will be 1 in
the output number, otherwise it will be 0 in the output number. The output
is a floating-point signal composed of the resulting bit pattern.

Examples

Bitwise or
of floating point signals bitor~

70

See Also

bitshift~ Bitwise shifting of a floating-point signal
bitand~ Bitwise “and” of floating-point signals
bitxor~ Bitwise “exclusive or” of floating-point signals
bitnot~ Bitwise inversion of a floating-point signal

Bit shifting
for floating point signals bitshift~

71

Input

signal The bitshift~ object performs bit shifting on a floating-point signal as
either raw 32-bit data or as an integer value.

floating-point signal bit values are expressed in the following form:

<1 sign bit> <8 exponent bits> <23 mantissa bits>

mode In left inlet: The word mode, followed by a zero or one, specifies whether
the floating signal or floating-point value will be processed as a raw 32-bit
floating-point value or converted to an integer value for bit shifting. The
modes of operation are:

Mode Description

0 Treat floating-point signal input as a raw 32-bit value
(default).

1 Convert the floating-point signal input to an integer value.

Note: If you convert the floating-point signal input to an int and then
convert it back, the resulting floating-point value will retain only 24 bits
of integer resolution.

shift In left inlet: The word shift, followed by a positive or negative number,
specifies the number of bits to be shifted on the incoming floating-point
signal. Positive number values correspond to left shifting that number of
bits (i.e., Left shifting a number n places is the same as dividing it by 2n).
Negative numbers correspond to right shifting that number of bits (i.e.,
Right shifting a number n places is the same as dividing it by 2n).

Arguments

int Optional. Sets the number of bits to be shifted on the incoming floating-
point signal. Positive shift values correspond to left shifting that number
of bits, negative shift values correspond to right shifting that number of
bits.

Bit shifting
for floating point signals bitshift~

72

int Optional. Specifies whether the floating signal or floating-point value will
be processed as a raw 32-bit floating-point value or converted to an integer
value for bit shifting. The modes of operation are:

Mode Description

0 Treat floating-point signal input as a raw 32-bit value
(default).

1 Convert the floating-point signal input to an integer value.

Output

signal The resulting bit shifted floating-point signal.

Examples

See Also

bitand~ Bitwise “and” of floating-point signals
bitor~ Bitwise “or” of floating-point signals
bitxor~ Bitwise “exclusive or” of floating-point signals
bitnot~ Bitwise inversion of a floating-point signal

Bitwise exclusive or
of floating point signals bitxor~

73

The bitxor~ object performs a bitwise “exclusive or” on two incoming floating-point
signals as either raw 32-bit data or as integer values. The bits of both incoming signals are
compared, and the corresponding output bit will be set to 1 if the two bit values are
different, and 0 if the two values are the same. The output is a floating-point signal
composed of the resulting bit pattern.

Input

signal In left inlet: The floating-point signal is compared, in binary form, with
the floating-point signal in the right inlet. The signal can be treated as
either a floating-point signal or as an integer.

In right inlet: The floating-point signal to be compared with the signal in
the left inlet. The signal can be treated as either a floating-point signal or
as an integer.

The raw floating-point signal bit values are expressed in the following
form:

<1 sign bit> <8 exponent bits> <23 mantissa bits>

int In right inlet: An integer value can be used as a bitmask when supplied to
the right inlet of the bitxor~ object, provided that the proper mode is set.

bits In left inlet: The word bits, followed by a list containing 32 ones or zeros,
specifies a bitmask to be used by bitxor~. Alternately, a bitmask value can
be set by using an int value in the right inlet.

mode In left inlet: The word mode, followed by a zero or one, specifies whether
the floating signal or floating-point values will be processed as raw 32-bit
floating-point values or converted to integer values for the bitwise
operation. The modes of operation are:

Mode Description

0 Treat both floating-point signal inputs as raw 32-bit values
(default).

1 Convert both floating-point signal inputs to integer values.

2 Treat the floating-point signal in the left inlet as a raw 32-
bit value and treat the value in the right inlet as an integer.

Bitwise exclusive or
of floating point signals bitxor~

74

3 Convert the floating-point signal in the left inlet to an
integer and treat the right input as a raw 32-bit value.

Note: If you convert the floating-point signal input to an int and then
convert it back, the resulting floating-point value will retain only 24 bits
of integer resolution.

Output

signal The two floating-point signals or ints received in the inlets are compared,
one bit at a time. A 1 is output if the two bit values are different, 0 if they
are the same. The output is a floating-point signal composed of the
resulting bit pattern.

Examples

See Also

bitshift~ Bitwise shifting of a floating-point signal
bitand~ Bitwise “and” of floating-point signals
bitor~ Bitwise “or” of floating-point signals
bitnot~ Bitwise inversion of a floating-point signal

Store audio samples buffer~

75

Input

bang Redraws the contents of the buffer~ object’s waveform display window. You
can open the display window by double-clicking on the buffer~ object.

clear Erases the contents of buffer~.

clearlow Erases the contents of the buffer like the clear message, but performs the
clear as a low-priority task.

filetype The word filetype, followed by symbol which specifies an audio file format,
sets the file type used by the buffer~ object. The default file type is
AIFF.Supported file types are identified as follows:

aiff Apple Interchange File Format (default)

sd2 Sound Designer II (Macintosh only)

wave WAVE

raw raw

au NeXT/Sun

import The word import, followed by a filename, reads that file into buffer~
immediately if it exists in Max’s search path without opening the Open
Document dialog box. Without a filename, import brings up an Open
Document dialog box allowing you to choose a file. The imported file
retains the sampling rate and word size of the original file, but looping
points and markers are not imported. The filename may be followed by a
float indicating a starting time in the file, in milliseconds, to begin
reading. (The beginning of the file is 0.)

The buffer~ object uses QuickTime to convert a media file (including MP3
files) into the sample memory of a buffer~, and requires that QuickTime be
installed on your system. If you are using Max on Windows, we
recommend that you install QuickTime and choose a complete install of all
optional components.

Since the import message uses QuickTime, which specifies units of time for
all files as 1/600 of a second rather than milliseconds, importing is not
guaranteed to start at the specified offset with millisecond accuracy. The
starting time may be followed by a float duration, in milliseconds, of
sound to be read into buffer~. This duration overrides the current size of the

Store audio samples buffer~

76

object’s sample memory. If the duration is negative, buffer~ reads in the
entire file and resizes its sample memory accordingly. If duration
argument is zero or not present, the buffer~ object’s sample memory is not
resized if the audio file is larger than the current sample memory size. The
duration may be followed by a number of channels to be read in. If the
number of channels is not specified, buffer~ reads in the number of
channels indicated in the header of the audio file. Whether or not the
number of channels is specified in the read message, the previous number of
channels in a buffer~ is changed to the number of channels read from the
file.

name The word name, followed by a symbol, changes the name by which other
objects such as cycle~, groove~, lookup~, peek~, play~, record~, and wave~
can refer to the buffer~. Objects that were referring to the buffer~ under its
old name lose their connection to it. Every buffer~ object should be given a
unique name; if you give a buffer~ object a name that already belongs to
another buffer~, that name will no longer be associated with the buffer~ that
first had it.

open Opens the buffer~ sample display window or brings it to the front if it is
already open.

read Reads an AIFF, Next/Sun, WAV file, or Sound Designer II file (Macintosh
only) into the sample memory of the buffer~. The word read, followed by a
filename, reads that file into buffer~ immediately if it exists in Max’s search
path without opening the Open Document dialog box. Without a
filename, read brings up a standard Open Document dialog box allowing
you to choose a file. The filename may be followed by a float indicating a
starting time in the file, in milliseconds, to begin reading. (The beginning
of the file is 0.) The starting time may be followed by a float duration, in
milliseconds, of sound to be read into buffer~. This duration overrides the
current size of the object’s sample memory. If the duration is negative,
buffer~ reads in the entire file and resizes its sample memory accordingly. If
duration argument is zero or not present, the buffer~ object’s sample
memory is not resized if the audio file is larger than the current sample
memory size. The duration may be followed by a number of channels to be
read in. If the number of channels is not specified, buffer~ reads in the
number of channels indicated in the header of the audio file. Whether or
not the number of channels is specified in the read message, the previous
number of channels in a buffer~ is changed to the number of channels read
from the file.

Store audio samples buffer~

77

readagain Reads sound data from the most recently loaded file (specified in a previous
read or replace message).

replace Same as the read message with a negative duration argument. replace,
followed by a symbol, treats the symbol as a filename located in Max’s file
search path. If no argument is present, buffer~ opens a standard open file
dialog showing available audio files. Additional arguments specify starting
time, duration, and number of channels as with the read message.

samptype In left inlet: The word samptype, followed by a symbol, specifies the sample
type to use when interpreting an audio file’s sample data (thus overriding
the audio file's actual sample type). This is sometimes called “header
munging.”

The following types of sample data are supported:

int8 8-bit integer

int16 16-bit integer

int24 24-bit integer

int32 32-bit integer

float32 32-bit floating-point

float64 64-bit floating-point

mulaw 8-bit µ-law encoding

alaw 8-bit a-law encoding

set The word set, followed by a symbol, changes the name by which other objects
such as cycle~, groove~, lookup~, peek~, play~, record~, and wave~ can refer
to the buffer~. Objects that were referring to the buffer~ under its old name
lose their connection to it. Every buffer~ object should be given a unique
name; if you give a buffer~ object a name that already belongs to another
buffer~, that name will no longer be associated with the buffer~ that first
had it.

size The word size, followed by a duration in milliseconds, sets the size of the
buffer~ object’s sample memory. This limits the amount of data that can be
stored, unless this size limitation is overridden by a replace message or a
duration argument in a read message.

Store audio samples buffer~

78

sr The word sr, followed by a sampling rate, sets the buffer~ object’s sampling
rate. By default, the sampling rate is the current output sampling rate, or
the sampling rate of the most recently loaded audio file.

wclose Closes the buffer~ sample display window if it is open.

write Saves the contents of buffer~ into an audio file. A standard file dialog is
opened for naming the file unless the word write is followed by a symbol, in
which case the file is saved in the current default folder, using the symbol
as the filename. Unless you change the format with the Format pop-up
menu in the standard Save As dialog box, the file will be saved in the
format specified by the most recently received filetype message, or the file
type of the most recently opened audio file. By default, buffer~ saves in
AIFF format.

writeaiff Saves the contents of the buffer~ as an AIFF file. A standard Save As dialog
is opened for naming the file unless the word writeaiff is followed by a
symbol, in which case the file is saved in the current default folder, using
the symbol as the filename.

writeau Saves the contents of the buffer~ as a NeXT/Sun file. A standard Save As
dialog is opened for naming the file unless the word writeau is followed by a
symbol, in which case the file is saved in the current default folder, using
the symbol as the filename.

writeraw Saves the contents of the buffer~ as a raw file with no header. The default
sample format is 16-bit, but the output sample format can be set with the
samptype message. A standard Save As dialog is opened for naming the file
unless the word writeraw is followed by a symbol, in which case the file is
saved in the current default folder, using the symbol as the filename.

writesd2 (Macintosh only) Saves the contents of the buffer~ into a Sound Designer
II file. A standard Save As dialog is opened for naming the file unless the
word writesd2 is followed by a symbol, in which case the file is saved in the
current default folder, using the symbol as the filename.

writewave Saves the contents of the buffer~ into a WAV file. A standard Save As
dialog is opened for naming the file unless the word writewave is followed by
a symbol, in which case the file is saved in the current default folder, using
the symbol as the filename.

(remote) The contents of buffer~ can be altered by the peek~ and record~ objects.

Store audio samples buffer~

79

(mouse) Double-clicking on buffer~ opens an display window where you can view
the contents of the buffer~.

Arguments

symbol Obligatory. The first argument is a name used by other objects to refer to
the buffer~ to access its contents.

symbol Optional. After the buffer~ object’s name, you may type the name of an
audio file to load when the buffer~ is created.

float or int Optional. After the optional filename argument, a duration may be
provided, in milliseconds, to set the size of the buffer~, which limits the
amount of sound that will be stored in it. (A new duration can be specified
as part of a read message, however.) If no duration is typed in, the buffer~
has no sample memory. It does not, however, limit the size of an audio file
that can be read in.

int Optional. After the duration, an additional argument may be typed in to
specify the number of audio channels to be stored in the buffer~. (This is to
tell buffer~ how much memory to allocate initially; however, if an audio file
with more channels is read in, buffer~ will allocate more memory for the
additional channels.) The maximum number of channels buffer~ can hold
is four. By default, buffer~ has one channel.

Output

float When the user clicks or drags with the mouse in the buffer~ object’s editing
window, the cursor’s time location in the buffer~, in milliseconds, is sent
out the outlet.

Examples

buffer~ can be used as a waveform table for an oscillator, or as a sample buffer

Store audio samples buffer~

80

See Also

2d.wave~ Two-dimensional wavetable
buffir~ Buffer-based FIR filter
cycle~ Table lookup oscillator
groove~ Variable-rate looping sample playback
lookup~ Transfer function lookup table
peek~ Read and write sample values
play~ Position-based sample playback
record~ Record sound into a buffer
sfplay~ Play audio file from disk
sfrecord~ Record to audio file on disk
wave~ Variable-size wavetable
Tutorial 3 Fundamentals: Wavetable oscillator
Tutorial 12 Synthesis: Waveshaping
Tutorial 13 Sampling: Recording and playback

buffer-based
FIR filter buffir~

81

The buffir~ object implements a finite impulse response (FIR) filter that performs the
convolution of an input signal and a set of coefficients which are derived from the samples
stored in a buffer~ object (referred to below as the filter buffer~) using the following equation:

Input

signal In left inlet: The signal to be convolved with samples from the buffer~.

In middle inlet: The offset (in samples) into the filter buffer~ from which the
buffir~ object begins to read.

In right inlet: The size of the slice from the filter buffer~ which is used to filter
the input signal, in samples. The maximum is 256.

int or float In middle inlet: The offset into the filter buffer~ from which buffir~ begins to
read, in samples.

In right inlet: The size (in samples) of the slice from the filter buffer~ which is
used to filter the input signal (the maximum is 256).

clear The word clear erases (zeroes) the current input history for the filter.

set The word set, followed by the name of a buffer~ object, an int which specifies
sample offset, and an optional int which specifies a number of samples,
specifies the name of a buffer~ object which buffir~ uses to filter its input signal.

Arguments

symbol Obligatory. The name of a buffer~ object which buffir~ uses to filter the input
signal.

buffer-based
FIR filter buffir~

82

int or float Optional. The offset, in samples, into the buffer~ object before buffir~ begins
reading samples to construct the filter. The default is 0.

int or float Optional. The size, in samples, of the slice in the buffer~ which buffir~ will use
for the filter. The default is 0.

Output

signal The filtered signal, based on a convolution of the input signal with samples in
the buffer~.

Examples

buffir~ lets you use slices of a buffer~ as an impulse response for an FIR filter

See Also

biquad~ Two-pole, two-zero filter
buffer~ Store audio samples

buffer-based
FIR filter buffir~

83

cascade~ Cascaded series of biquad filters

Store a signal
to view as text capture~

84

Input

signal An excerpt of the signal is stored as text for viewing, editing, or saving to a
file. (The length of the excerpt can be specified as a typed-in argument to
the object.)

write Saves the contents of capture~ into a text file. A standard file dialog is
opened for naming the file. The word write, followed by a symbol, saves the
file, using the symbol as the filename, in the same folder as the patch
containing the capture~. If the patch has not yet been saved, the capture~
file is saved in the same folder as the Max application.

clear Erases the contents of capture~.

open Causes an editing and viewing window for the capture~ object to become
visible. The window is also brought to the front.

wclose Closes the window associated with the capture~ object.

(mouse) Double-clicking on capture~ opens a window for viewing and editing its
contents. The numbers in the editing window can be copied and pasted
into a graphic buffer~ editing window.

Arguments

f Optional. If the first argument is the letter f, capture~ stores the first signal
samples it receives, and then ignores subsequent samples once its storage
buffer is full. If the letter f is not present, capture~ stores the most recent
signal samples it has received, discarding earlier samples if necessary.

int Optional. Limits the number of samples (and thus the length of the
excerpt) that can be held by capture~. If no number is typed in, capture~
stores 4096 samples. The maximum possible number of samples is limited
only by the amount of memory available to the Max application. A second
number argument may be typed in to set the precision (the number of
digits to the right of the decimal point) with which samples will be shown
in the editing window.

int Optional. A list of up to 10 indices within a signal vector. If no indices
present, capture~ records the entire vector.

Store a signal
to view as text capture~

85

Output

None.

Examples

Capture a portion of a signal as text, to view, save, copy and paste, etc.

See Also

scope~ Signal oscilloscope

Signal Cartesian to Polar
coordinate conversion cartopol~

86

Input

signal In left inlet: The real part of a frequency domain signal (such as that
created by the fft~ or fftin~ objects) to be converted to a polar-coordinate
signal pair consisting of amplitude and phase values.

In right inlet: The imaginary part of a frequency domain signal (such as
that created by the fft~ or fftin~ objects) to be converted to a polar-
coordinate signal pair consisting of amplitude and phase values.

Arguments

None.

Output

signal Out left outlet: The magnitude (amplitude) of the frequency bin
represented by the current input signals.

Out right outlet: The phase, expressed in radians, of the frequency bin
represented by the current input signals. If only the left outlet is connected
the phase computation will be bypassed, reducing the intensity of the
computation.

Examples

Use cartopol~ to get amplitude/phase data from the real/imaginary data pair that fftin~
outputs

Signal Cartesian to Polar
coordinate conversion cartopol~

87

See Also

cartopol Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 26 Frequency Domain Signal Processing with pfft~

Cascaded series of
biquad filters cascade~

88

Input

signal In left inlet: Signal to be filtered. The signal is filtered by a series of two-
pole two-zero (i.e. biquad) filters, often referred to as “second order
sections”.

list In right inlet: The filter coefficients can be provided as a list in the left inlet.
The coefficients should be in sets of five, each set corresponding to a
second-order section or biquad. The first five coefficients in the list are used
for the first second-order section in the series, the next five for the second,
and so on.

Arguments

None.

Output

signal The filtered signal.

Examples

Use cascade~ with filtergraph~ in multi-filter mode to efficiently process a complex
parametric filter

.

Cascaded series of
biquad filters cascade~

89

See Also

biquad~ Two-pole, two-zero filter
buffir~ Buffer-based FIR filter
comb~ Comb filter
filtergraph~ Graphical filter editor
lores~ Resonant lowpass filter
onepole~ Single-pole lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control

Report signal direction change~

90

Input

signal Any signal.

Arguments

None.

Output

signal When the current sample is greater in value than the previous sample,
change~ outputs a sample of 1. When the current sample is the same as the
previous sample, change~ outputs a sample of 0. When the current sample is
less than the previous sample, change~ outputs a sample of –1.

Examples

Detect whether a signal is increasing, decreasing, or remaining constant

See Also

edge~ Detect logical signal transitions
thresh~ Detect signal above a set value
zerox~ Zero-cross counter and transient detector

Create an impulse click~

91

Input

bang Sends an impulse out the click~ object’s outlet. The default impulse consists
of a single value (1.0), followed by a zero value.

set The word set, followed by a list of floating-point values in the range 0.0-
1.0, specifies a impulse (i.e., a small wavetable) whose length is determined
by the number of list elements. The maximum size for the list is 256 items.

Arguments

list Optional. A list can be used to define the contents of a wavetable used for
the impulse (see the set message). The maximum number of arguments is
256.

Output

signal An impulse.

Examples

Trigger an impulse signal

See Also

buffer~ Store a sound sample
buffir~ buffer-based FIR filter
line~ Linear ramp generator

Limit signal amplitude clip~

92

Input

signal In left inlet: Any signal, which will be restricted within the minimum and
maximum limits received in the middle and right inlets.

In middle inlet: Minimum limit for the range of the output signal.

In right inlet: Maximum limit for the range of the output signal.

float or int The middle and right inlets can receive a float or int instead of a signal to set
the minimum and/or maximum.

Arguments

float Optional. Initial minimum and maximum limits for the range of the
output signal. If no argument is supplied, the minimum and maximum
limits are both initially set to 0. If a signal is connected to the middle or
right inlet, the corresponding argument is ignored.

Output

signal The input signal is sent out, limited within the specified range. Any value
in the input signal that exceeds the minimum or maximum limit is set
equal to that limit.

Examples

Output is a clipped version of the input

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals
trunc~ Truncate fractional signal values

Comb filter comb~

93

Input

signal In left inlet: Signal to be filtered. The filter mixes the current input sample
with earlier input and/or output samples, according to the formula:

yn = axn + bxn-(DR/1000) + cyn-(DR/1000)

where R is the sampling rate and D is a delay time in milliseconds.

In 2nd inlet: Delay time (D) in milliseconds for a past sample to be added
into the current output.

In 3rd inlet: Amplitude coefficient (a), for scaling the amount of the input
sample to be sent to the output.

In 4th inlet: Amplitude coefficient (b), for scaling the amount of the
delayed past input sample to be added to the output.

In right inlet: Amplitude coefficient (c), for scaling the amount of the
delayed past output sample to be added to the output.

float or int The filter parameters in inlets 2 to 5 may be specified by a float instead of a
signal. If a signal is also connected to the inlet, the float is ignored.

list The three parameters can be provided as a list in the left inlet. The first
number in the list is the delay time D, the next number is coefficient a, and
the third number is coefficient b. If a signal is connected to a given inlet,
the coefficient supplied in the list for that inlet is ignored.

clear Clears the comb~ object’s memory of previous outputs, resetting them to 0.

Arguments

float Optional. Up to five numbers, to set the maximum delay time and initial
values for the delay time D and coefficients a, b, and c. If a signal is
connected to a given inlet, the coefficient supplied as an argument for that
inlet is ignored. If no arguments are present, the maximum delay time
defaults to 10 milliseconds, and all other values default to 0.

Output

signal The filtered signal.

Comb filter comb~

94

Examples

Filter parameters may be supplied as float values or as signals

See Also

allpass~ Allpass filter
delay~ Delay line specified in samples
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control

Signal cosine
function (0-1 range) cos~

95

Input

signal Input to a cosine function. The input is stated as a fraction of a cycle
(typically in the range from 0 to 1), and is multiplied by 2π before being
used in the cosine function.

Arguments

None.

Output

signal The cosine of 2π times the input. The method used in this object to
calculate the cosine directly is typically less efficient than using the stored
cosine in a cycle~ object.

Examples

Cosine of the input (a fraction of a cycle) is calculated and sent out

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
cycle~ Table lookup oscillator
phasor~ Sawtooth wave generator
sinh~ Signal hyperbolic sine function

Signal cosine
function (0-1 range) cos~

96

sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function
trapezoid~ Trapezoidal wavetable
triangle~ Triangle/ramp wavetable
wave~ Variable-size wavetable
2d.wave~ Two-dimensional wavetable

Signal hyperbolic
cosine function cosh~

97

Input

signal Input to a hyperbolic cosine function.

Arguments

None.

Output

signal The hyperbolic cosine of the input.

Examples

Exciting nautical motif audio control signals call for the cosh~ object

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function

Signal hyperbolic
cosine function cosh~

98

atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

Input

signal Output from a cosine function. Unlike the cos~ object, whose output is based
around 1 and intended for use as a lookup table with the phasor~ object, the
cosx~ object is a true π-based function.

Arguments

None.

Output

signal The cosine of the input.

Examples

cosx~ can make your audio control signals less jumpy and more bumpy

Signal
cosine function cosx~

99

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

Signal sample counter count~

100

Input

bang If the audio is on, the output signal begins counting from its current
minimum value, increasing by one each sample. If the signal is already
currently counting, it resets to the minimum value and continues upward.

int In left inlet: Sets a new current minimum value, and the output signal
begins counting upward from this value.

In right inlet: Sets the count limit, which is never actually reached. When
the count reaches this value, it starts over at the minimum value. A value
of 0 (the default) eliminates the maximum, and the count continues
increasing without resetting.

list In left inlet: A list consisting of four numbers can be used to specify the
behavior of the count~ object. The first and second numbers specify the
minimum and maximum values for the count, the third number specifies
whether the count~ object is off (0) or on (1) initially, and the fourth
number sets the autoreset flag (see the autoreset message below).

float In any inlet: Converted to int.

autoreset In left inlet: The word autoreset, followed by a nonzero number, resets the
counter to the minimum value when audio is turned on.

min In left inlet: The word min, followed by a number, sets the count minimum
on next loop without immediately affecting output.

set In left inlet: The word set, followed by a number, sets the count minimum
on the next loop without immediately affecting output.

stop In left inlet: Causes count~ to output a signal with its current minimum
value.

Arguments

int Optional. The first argument sets initial minimum value for the counter.
The default value is 0. The second argument sets the initial maximum
value for the counter, the default value is 0, which means there is no
maximum value. The third argument specifies whether the count~ object is
off (0) or on (1) initially. The fourth argument sets the autoreset state of
the object (see the autoreset message above).

Signal sample counter count~

101

Output

signal When the audio is first turned on, count~ always sends out its current
minimum value. When a bang or int is received, the count begins increasing
from the current minimum value.

Examples

Send out a running count of the passing samples, beginning at a given point

See Also

index~ Sample playback without interpolation
mstosamps~ Convert milliseconds to samples
sampstoms~ Convert samples to milliseconds
+=~ Signal accumulator
MSP Tutorial 13 Sampling: Recording and playback

Third-order
crossover filter cross~

102

Input

signal In left inlet: Any signal to be filtered.

In right inlet: Sets the filter cutoff frequency for both the lowpass and the
highpass parts of the output signal.

int In right inlet: Converted to float.

float In right inlet: Sets the filter cutoff frequency for both the lowpass and the
highpass parts of the output signal.

Arguments

float Required. The argument sets the initial initial cutoff frequency for the
lowpass and the highpass parts of the output signal.

Output

signal Out left inlet: The lowpass-filtered input signal.

In right inlet: The highpass-filtered input signal.

Together the lowpass- and highpass-filtered signals coombine to produce a
flat frequency response equivalent to the input signal. The phase response
for the filtered output is, however, slightly altered.

Third-order
crossover filter cross~

103

Examples

Split a signal into high and low frequency components.

See Also

allpass~ Allpass filter
biquad~ Two pole, two zero filter
filtergraph~ Graphical filter editor
lores~ Resonant lowpass filter
onepole~ Single-pole lowpass filter
reson~ Resonant bandpass filter

Exponential
ramp generator curve~

104

Input

list The first number specifies a target value; the second number specifies an
amount of time, in milliseconds, to arrive at that value; and the optional
third number specifies a curve parameter, for which values from 0 to 1
produce an exponential curve and values from –1 to 0 produce a
logarithmic curve. The closer to 0 the curve parameter is, the more the
curve resembles a straight line, and the farther away the parameter is from
0, the more the curve resembles a step. In the specified amount of time,
curve~ generates an exponential ramp signal from the currently stored
value to the target value.

curve~ accepts up to 42 target-time-parameter triples to generate a series of
exponential ramps. (For example, the message 0 1000 .5 1 1000 -.5 would go
from the current value to 0 in one second, then to 1 in one second.) Once
one of the ramps has reached its target value, the next one starts. A new list,
float, or int in the left inlet clears any ramps that have not yet generated.

float or int In left inlet: The number is the target value, to be arrived at in the time
specified by the number in the middle inlet. If no time has been specified
since the last target value, the time is considered to be 0 and the output
signal jumps immediately to the target value.

In middle inlet: The time, in milliseconds, in which the output signal will
arrive at the target value.

In right inlet: The number is the curve parameter. Values from 0 to 1
produce an exponential curve, and values from –1 to 0 produce a
logarithmic curve. The closer to 0 the number is, the more the curve
resembles a straight line; the farther away the number is from 0, the more
the curve resembles a step.

pause In left inlet: Pauses the internal exponential ramp but does not change the
target value nor clear pending target-time-parameter triples. curve ~ will
continue outputting whatever value was its current value when the pause
message was received, until either it receives a resume message or until a new
ramp is input.

resume In left inlet: Resumes the internal exponential ramp and subsequent
pending target-time pairs if the curve ~ object was paused as a result of the
pause message.

Exponential
ramp generator curve~

105

stop In left inlet: Stops the internal exponential ramp and clears pending
target-time-parameter triples. curve ~ will continue outputting whatever
value was its current value when the stop message was received, resetting its
target value to that value.

Arguments

float or int Optional. The first argument sets an initial value for the signal output. The
second argument sets the initial curve parameter. The default values for the
initial signal output and curve parameter are 0.

Output

signal Out left outlet: The current target value, or an exponential curve moving
toward the target value according to the most recently received target
value, transition time, and curve parameter.

bang Out right outlet. When curve~ has finished generating all of its ramps, bang
is sent out.

Examples

Curved ramps used as control signals for frequency and amplitude

See Also

line~ Linear ramp generator

Table lookup
oscillator cycle~

106

The cycle~ object is an interpolating oscillator that reads repeatedly through one cycle of a
waveform, using a wavetable of 512 samples. Its default waveform is one cycle of a cosine
wave. It can use other waveforms by accessing samples from a buffer~ object. The 513th
sample in the wavetable source (the buffer~) is used for interpolation beyond the 512th
sample. For repeating waves, it’s usually desirable for the 513th sample to be the same as the
first sample, so there will be no discontinuity when the waveform wraps around from the end
to the beginning. If only 512 samples are available, cycle~ assumes a 513th sample equal to
the 1st sample.This is the case for the cycle~ object’s default cosine waveform. If this is what
you want for other waveforms, you should make the 513th sample the same as the 512th
sample, or omit the 513th sample.

Input

signal In left inlet: Frequency of the oscillator. Negative values are allowed.

In right inlet: Phase, expressed as a fraction of a cycle, from 0 to 1. Other
values are wrapped around to stay in the 0 to 1 range. If the frequency is 0,
connecting a phasor~ to this inlet is an alternative method of producing an
oscillator. If the frequency is non-zero, connecting a cycle~ or other repeating
function to this inlet produces phase modulation, which is similar to frequency
modulation.

float or int In left inlet: Sets the frequency of the oscillator. If there is a signal connected to
the left inlet, this number is ignored.

In right inlet: Sets the phase (from 0 to 1) of the oscillator. Other values wrap
around to stay between 0 and 1. If the frequency remains fixed, cycle~ keeps
track of phase changes to keep the oscillator in sync with other cycle~ or
phasor~ objects at the same frequency. If there is a signal connected to the right
inlet, this number is ignored.

set The word set, followed by the name of a buffer~ object, changes the wavetable
used by cycle~. The name can optionally be followed by an int specifying the
sample offset into the named buffer~ object’s sample memory. cycle~ uses only
the first (left) channel of a multi-channel buffer~.

The word set with no arguments reverts cycle~ to the use of its default cosine
wave.

Table lookup
oscillator cycle~

107

Arguments

float or int Optional. The initial frequency of the oscillator. If no frequency argument is
present, the initial frequency is 0.

symbol Optional. The name of a buffer~ object used to store the oscillator’s wavetable.
If a float or int frequency argument is present, the buffer~ name follows the
frequency. (No frequency argument is required, however.) If no buffer~ name
is given, cycle~ uses a stored cosine wave.

int Optional. If a buffer~ name has been given, an additional final argument can
used to specify the sample offset into the named buffer~ object’s sample
memory. cycle~ only uses the first channel of a multi-channel buffer~.

Output

signal A waveform (cosine by default) repeating at the specified frequency, with the
specified phase.

Arguments

float or int Optional. The initial frequency of the oscillator. If no frequency argument is
present, the initial frequency is 0.

symbol Optional. The name of a buffer~ object used to store the oscillator’s wavetable.
If a float or int frequency argument is present, the buffer~ name follows the
frequency. (No frequency argument is required, however.) If no buffer~ name
is given, cycle~ uses a stored cosine wave.

int Optional. If a buffer~ name has been given, an additional final argument can
used to specify the sample offset into the named buffer~ object’s sample
memory. cycle~ only uses the first channel of a multi-channel buffer~.

Output

signal A waveform (cosine by default) repeating at the specified frequency, with the
specified phase.

Table lookup
oscillator cycle~

108

Examples

Repeated cosine or any other waveform

See Also

buffer~ Store audio samples
buffir~ Buffer-based FIR filter
cos~ Cosine function
line~ Linear ramp generator
phasor~ Sawtooth wave generator
rect~ Antialiased rectangular (pulse) waveform generator
saw~ Antialiased sawtooth waveform generator
techno~ Signal-driven sequencer
trapezoid~ Trapezoidal wavetable
tri~ Antialiased triangle waveform generator
triangle~ Triangle/ramp wavetable
wave~ Variable-size wavetable
2d.wave~ Two-dimensional wavetable
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 3 Fundamentals: Wavetable oscillator

Audio output and on/off dac~

109

Input

signal A signal coming into an inlet of dac~ is sent to the audio output channel
corresponding to the inlet. The signal must be between –1 and 1 to avoid
clipping by the DAC.

open Opens the DSP Status window.

set In any inlet: The word set, followed by a number, sets the logical output
channel for the signal inlet in which the set message was received. For instance,
sending set 3 to the left inlet of dac~ makes the signal coming in the left inlet
to output to logical output channel 3.

Note that if the audio is on and you use the set message to change a dac~ to
use logical channels that are not currently in use, no sound will be heard from
these channels until the audio is turned off and on again. For example, if you
have a dac~ object with arguments 1 2 3 4 and signals are only connected to the
two leftmost inlets (for channels 1 and 2), the message set 1 3 will not
immediately route the leftmost audio signal to logical channel 3, because it is
not currently in use. A method to get around this is to connect a sig~ 0 to each
channel of a dac~ you plan on using for a set message. At this point, you might
as well use a matrix~ or switch~ object to do something similar before the audio
signal reaches the dac~.

start Turns on audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this dac~ is located, and
in subpatches of that patch. Turns off audio processing in all other patches.

stop Turns off audio processing in all loaded patches.

wclose Closes the DSP Status window if it is open.

int A non-zero number is the same as start. 0 is the same as stop.

(mouse) Double-clicking on dac~ opens the DSP Status window.

Arguments

int Optional. You can create a dac~ object that uses one or more audio output
channel numbers between 1 and 512. These numbers refer to logical channels
and can be dynamically reassigned to physical device channels of a particular

Audio output and on/off dac~

110

driver using either the DSP Status window, its I/O Mappings subwindow, or
an adstatus object with an output keyword argument.Arguments, If the
computer’s built-in audio hardware is being used, there will be two input
channels available. Other audio drivers and/or devices may have more than
two channels. If no argument is typed in, dac~ will have two inlets, for input
channels 1 and 2.

Output

None. The signal received in the inlet is sent to its assigned logical audio
output channel, which is mapped to a physical device output channel in the
DSP Status window.

Examples

Switch audio on and off, send signal to the audio outputs

See Also

adc~ Audio input and on/off
adstatus� Access audio driver output channels
ezadc~ Audio on/off; analog-to-digital converter
ezdac~ Audio output and on/off button
Audio I/O Audio input and output with MSP
Tutorial 1 Fundamentals: Test tone

Convert a deciBel value to linear
amplitude at signal rate dbtoa~

111

Input

signal A signal representing a gain/attenuation, expressed in deciBels. It is converted
to a linear amplitude value and output as a signal.

Arguments

None.

Output

signal The linear amplitrude value output as a signal.

Examples

Old-fashioned, no-nonsense numerical conversion.

See Also

expr Evaluate a mathematical expression
atodb Convert linear amplitude to a deciBel value
atodb~ Convert linear amplitude to a deciBel value at signal rate
dbtoa Convert a deciBel value to linear amplitude

Signal quality
reducer degrade~

112

Input

signal In left inlet: The signal to be degraded.

float In middle inlet: The ratio of frequency at which the input signal is
resampled, effectively reducing its sampling rate. This ratio is the
resampling rate divided by the system sampling rate. For example, if MSP's
current sampling rate is 44100 Hz, and the ratio is 0.75, the effective
sampling rate of the output signal will be 33075 Hz.

int In right inlet: The number of bits used to quantize the input signal. This
value must be in the range 1-24. Fewer bits mean lower signal quality.

Arguments

float Optional. The first argument sets the resampling frequency ratio, as
described above. If this argument is not supplied, the default value is 1.0.

int Optional. The second argument sets the number of bits used to quantize
the input signal. If this argument is not supplied, the default value is 24.

Output

signal The output signal is the input signal after being resampled and quantized.
Note that this object deliberately does not use any interpolation when
resampling, nor any dithering when quantizing. It is intended for creating
“low-fi” effects.

Note: Use caution when listening to the output of this object. Quantizing
to a small number of bits can create very loud, noisy signals.

Examples

Change a signal’s effective sampling rate and bit depth

Signal quality
reducer degrade~

113

See Also

downsamp~ Downsample a signal
round~ Round an input signal value

Delay line
specified in samples delay~

114

Input

signal In left inlet: The signal to be delayed.

int In right inlet: The delay time in samples. The delay time cannot be less
than 0 (no delay) nor can it be greater than the maximum delay time set
by the argument to delay~.

Arguments

int Optional. The first argument sets the maximum delay in samples. This
determines the amount of memory allocated for the delay line. The default
value is 512. The second argument sets the initial delay time in samples.
The default value is 0.

Output

signal The output consists of the input delayed by the specified number of
samples. The differences between delay~ and tapin~/tapout~ are as follows:
First, delay times with delay~ are specified in terms of samples rather than
milliseconds, so they will change duration if the sampling rate changes.
Second, the delay~ object can reliably delay a signal a number of samples
that is less than a vector size. Finally, unlike tapin~ and tapout~, you cannot
feed the output of delay~ back to its input. If you wish to use feedback with
short delays, consider using the comb~ object.

Examples

Delay signal for a specific number of samples, for echo or filtering effects

Delay line
specified in samples delay~

115

See Also

comb~ Comb filter
tapin~ Input to a delay line
tapout~ Output from a delay line

Signal of
sample differences delta~

116

Input

signal Any signal.

Arguments

None.

Output

signal The output consists of samples that are the difference between the current
input sample and the previous input sample. For example, if the input signal
contained 1,.5,2,.5, the output would be 1,-.5,1.5,-1.5.

Examples

Report the difference between one sample and the previous sample

See Also

average~ Multi-mode signal average
avg~ Signal average

Limit changes in
signal amplitude deltaclip~

117

deltaclip~ limits the change between samples in an incoming signal. It is similar to the
clip~ object, but it limits amplitude changes with respect to slope rather than amplitude.

Input

signal In left inlet: Any signal.

float or int In middle inlet: Minimum slope for the rate of change of the output
signal. The minimum slope is typically negative.

In right inlet: Maximum slope for the rate of change of the output signal.
The maximum slope is typically positive.

Arguments

float Optional. Initial minimum and maximum slope values for the rate of
change of the output signal. If no argument is supplied, the minimum and
maximum limits are both initially set to 0. If a signal is connected to the
middle or right inlet, the corresponding argument is ignored.

Output

signal The input signal is sent out, with its change limited by the minimum and
maximum slope values.

Examples

Limit a signal's rate of change

See Also

clip~ Limit signal amplitude

Downsample
a signal downsamp~

118

Input

signal In left inlet: A signal to be downsampled. The downsamp~ object samples
and holds a signal received in the left inlet at a rate set by an argument to
the object of the value received in the right inlet, expressed in samples. No
interpolation of the output is performed.

In right inlet: The rate, in samples, at which the incoming signal is to be
downsampled.

int or float In right inlet: Sets the sample rate used to downsample the input signal.
You can specify the number of samples with floating-point values, but the
downsamp~ object will sample the input at most as frequently as the current
sampling rate.

Arguments

int or float Optional. Sets the sample rate.

Output

signal The input signal, resampled at the rate set by argument or by the value
received in the right inlet.

Examples

Sample and hold every n samples

See Also

degrade~ Signal quality reducer
sah~ Sample and hold

Report current
DSP settings dspstate~

119

Input

bang Triggers a report out the dspstate~ object’s outlets, telling whether the audio
is on or off, the current sampling rate, and the signal vector size.

(on/off) The dspstate~ object reports DSP information whenever the audio is turned
on or off.

signal If a signal is connected to the dspstate~ object’s inlet, dspstate~ reports that
signal’s sampling rate and vector size, rather than the global sampling rate
and signal vector size.

Arguments

None.

Output

int Out left outlet: If the audio is on or being turned on, 1 is sent out. If the
audio is off or being turned off, 0 is sent out.

float Out second outlet: Sampling rate of the connected signal or the global
sampling rate.

int Out third outlet: Current DSP signal vector size.

int Out fourth outlet: Current I/O signal vector size.

Examples

Trigger an action when audio is turned on or off; use sample rate to calculate timings

See Also

sampstoms�~ Convert samples to milliseconds

Report current
DSP settings dspstate~

120

mstosamps~ Convert milliseconds to samples
Tutorial 20 MIDI control: Sampler
Tutorial 25 Analysis: Using the FFT

Report milliseconds
of audio processed dsptime~

121

Input

bang When dsptime~ receives a bang, it reports the number of milliseconds corre-
sponding to the number of audio samples that have currently been processed.

Arguments

None.

Output

float The number of milliseconds corresponding to the number of audio samples
that have currently been processed. The value is based on the processed audio
sample count, not the real time of the millisecond timer. This means you can
use the dsptime~ object as a sort of clock in conjunction with the
NonRealTime audio driver.

Examples

Shut audio processing off automatically after 40 seconds have been processed

See Also

adstatus� Access audio driver output channels

Detect logical
signal transitions edge~

122

Input

signal A signal that will change between zero and non-zero values, such as the
output of a signal comparison operator.

Arguments

None.

Output

bang Out left outlet: Sent when the input signal changes from zero to non-zero.
The minimum time between bang messages will not be shorter than the
minimum scheduler interval, which is generally equal to the signal vector
size, but may be larger if Scheduler in Audio Interrupt mode is not
enabled.

Out right outlet: Sent when the input signal changes from non-zero to
zero. The output will not happen more often than the time represented by
the number of samples in the current input/output vector size.

Examples

Send a triggering Max message when a significant moment occurs in a signal

See Also

change~ Report signal direction
thresh~ Detect signal above a set value
zerox~ Zero-cross counter and transient detector

Audio input
and on/off button ezadc~

123

Input

(mouse) Clicking on ezadc~ toggles audio processing on or off. Audio on is
represented by the object being highlighted.

int A non-zero number turns on audio processing in all loaded patches. 0 turns
off audio processing in all loaded patches.

local The word local, followed by 1, makes a click to turn on ezadc~ equivalent to
sending it the startwindow message. local 0 returns ezadc~ to its default
mode where a click to turn it on is equivalent to the start message.

open Opens the DSP Status window. The window is also brought to the front.

start Turns on audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this ezadc~ is located,
and in subpatches of that patch. Turns off audio processing in all other
patches.

stop Turns off audio processing in all loaded patches.

wclose Closes the DSP Status window.

Arguments

None.

Output

signal Out left outlet: Audio input from channel 1.

Out right outlet: Audio input from channel 2.

Audio input
and on/off button ezadc~

124

Examples

Audio input for processing and recording

See Also

adstatus Access audio driver output channels
ezdac~ Audio output and on/off button
adc~ Audio input and on/off

Audio output
and on/off button ezdac~

125

Input

signal In left inlet: The signal is sent to audio output channel 1. The signal in each
inlet must be between –1 and 1 to avoid clipping by the DAC.

In right inlet: The signal is sent to audio output channel 2.

(mouse) Clicking on ezdac~ toggles audio processing on or off. Audio on is represented
by the object being highlighted.

int A non-zero number turns on audio processing in all loaded patches. 0 turns off
audio processing in all loaded patches.

local The word local, followed by 1, makes a click to turn on ezdac~ equivalent to
sending it the startwindow message. local 0 returns ezdac~ to its default mode
where a click to turn it on is equivalent to the start message.

open Opens the DSP Status window. The window is also brought to the front.

start Turns on audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this ezdac~ is located,
and in subpatches of that patch. Turns off audio processing in all other
patches.

stop Turns off audio processing in all loaded patches.

wclose Closes the DSP Status window.

Arguments

None.

Output

None. The signal received in the inlet is sent to the corresponding audio
output channel.

Audio output
and on/off button ezdac~

126

Examples

Switch audio on and off, send signal to the audio outputs

See Also

adstatus Access audio driver output channels
ezadc~ Audio input and on/off button
adc~ Audio output and on/off
Tutorial 3 Fundamentals: Wavetable oscillator

Frequency domain
frequency shifter for pfft~ fbinshift~

127

The fbinshift~ object implements a frequency-domain frequency shifter. It works by
shifting the frequency bins of an FFT’d signal, hence its name (a shortened form of
“frequency-bin shifter”). All the frequencies of the complex input signal are shifted by the
Hertz value speified. Positive Hertz values shift upward, whereas negative values shift
downward. The fbinshift~ object must be used inside a pfft~; outside a pfft~ it does nothing.

Input

signal In left inlet: The signal present at the left inlet is the real part of a
frequency-domain signal coming from a fftin~ object inside a pfft~.

In middle inlet, The signal input to the middle inlet is the imaginary part
of a frequency-domain signal coming from a fftin~ object inside a pfft~.
Both real and imaginary inputs must be connected for the fbinshift~ to
work.

float In rightmost inlet: a float in the right inlet will be used as a frequency
amount in Hertz by which the complex (real+imaginary) input signal will
be shifted.

int In right inlet: converted to float.

Arguments

float Optional. A numerical argument will be used as the frequency shift in
Hertz. The default is zero.

int Converted to float.

Output

signal The output is the frequency shifted complex signal. The left outlet is the
real component, and the right outlet is the imaginary component. These
may be connected to the real and imaginary inputs of a fftout~ object
inside a pfft~.

Frequency domain
frequency shifter for pfft~ fbinshift~

128

Examples

Using fbinshift inside a pfft~subpatch

See Also

freqshift~ Time-domain frequency shifter.
gizmo~ Frequency-domain pitch shifter for pfft~.
hilbert~ Phase quadrature filter.

Fast fixed
filter bank fffb~

129

The fffb~ object implements a bank of bandpass filter objects, each of which is similar to
the reson~ filter object. An input signal is applied to all filters, and the outputs of each
filter are available separately. This object is more efficient than using a number of reson~
objects, but for the sake of speed does not accept signals for parameter changes.

Input

signal The signal present at the left inlet is sent to all of the filters.

freq In left inlet: The word freq, followed by a list consisting of an int and one
or more floats, sets the center frequencies of the filters starting with the
filter whose index is given by the first number. This filter's frequency is set
to the second number in the list. Any following numbers in the list set the
frequencies of filters following the first designated one. Indices are zero-
based.

For example, the message freq 3 1974.0 333.0 1234.0 sets the frequency of the
fourth filter to 1974Hz, the fifth filter to 333Hz, and the sixth filter to
1234Hz.

freqAll in left inlet: The word freqAll, followed by a float, sets the center frequencies
of all of the filters to the given floating-point value.

freqRatio In left inlet: The word freqRatio, followed by a list of two or more numbers
sets the center frequency of the first filter to the first value in the list, and
sets the frequencies of the remaining filters by repeatedly multiplying the
first value by the second, so that the ratio of frequencies of successive filters
is the second value—for example, the message freqRatio 440. 2. sets the
frequency of the first filter to 440Hz, the frequency of the second to
880Hz, the frequency of the third to 1760Hz, and so on.

If the second item in the list is the letter H rather than a number, the filters
will be tuned in a harmonic series. For example, the message freqRatio 100 H
sets the frequencies of the filters to 100Hz, 200Hz, 300Hz, 400Hz, and so
on.

gain In left inlet: The word gain, followed by a list consisting of an int and one
or more floats, sets the gains of the filters starting with the filter whose
index is given by the first number. This filter's gain is set to the second
number in the list. Any following numbers in the list set the gains of filters
following the first designated one. Indices are zero-based.

Fast fixed
filter bank fffb~

130

gainAll In left inlet: The word gainAll, followed by a float, sets the gain of all of the
filters to the given floating-point value.

Q In left inlet: The symbol Q, followed by a list consisting of an int and one
or more floats, sets the Q factors of the filters, starting with the filter whose
index is given by the first number. This filter's Q factor is set to the second
number in the list. Any following numbers in the list set the Q factors of
filters following the first designated one. Indices are zero-based.

QAll In left inlet: The word QAll, followed by a float, sets the Q of all of the filters
to the given floating-point value.

Arguments

int Obligatory. The first argument specifies the number of filters.

float Optional. Three additional float arguments may be used to specify the
frequency of the first filter, the ratio of frequencies between successive
filters, and the Q factor for all of the filters.

symbol Optional. If you use the letter H as the second argument rather than a
float, the filters will be tuned to a harmonic series rather than with ratios of
frequencies.

Output

signal The output of each filter is provided at a separate outlet. The leftmost
outlet is the output of the first filter.

Fast fixed
filter bank fffb~

131

Examples

Stereo expansion by altering the base frequency and frequency ratio

See Also

reson~ Resonant bandpass filter

Fast Fourier transform fft~

132

Input

signal In left inlet: The real part of a complex signal that will be transformed.

In right inlet: The imaginary part of a complex signal that will be
transformed.

If signals are connected only to the left inlet and left outlet, a real FFT
(fast Fourier transform) will be performed. Otherwise, a complex FFT will
be performed.

Arguments

int Optional. The first argument specifies the number of points (samples) in
the FFT. It must be a power of two. The default number of points is 512.
The second argument specifies the number of samples between successive
FFTs. This must be at least the number of points, and must also be a power
of two. The default interval is 512. The third argument specifies the offset
into the interval where the FFT will start. This must either be 0 or a
multiple of the signal vector size. fft~ will correct bad arguments, but if you
change the signal vector size after creating an fft~ and the offset is no
longer a multiple of the vector size, the fft~ will not operate when signal
processing is turned on.

Output

signal Out left outlet: The real part of the Fourier transform of the input. The
output begins after all the points of the input have been received.

Out middle outlet: The imaginary part of the Fourier transform of the
input. The output begins after all the points of the input have been
received.

Out right outlet: A sync signal that ramps from 0 to the number of points
minus 1 over the period in which the FFT output occurs. You can use this
signal as an input to the index~ object to perform calculations in the
frequency domain. When the FFT is not being sent out (in the case where
the interval is larger than the number of points), the sync signal is 0.

Fast Fourier transform fft~

133

Examples

Fast Fourier transform of an audio signal

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
index~ Sample playback without interpolation
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT

Input for a patcher
loaded by pfft~ fftin~

134

The fftin~ object provides an signal input to a patcher loaded by a pfft~ object; it won’t do
anything if you try to use it anywhere other than inside a patcher loaded by the pfft~
object. Where the pfft~ object manages the windowing and overlap of the incoming
signal, fftin~ applies the windowing function (the envelope) and performs the Fast Fourier
Transform.

Input

signal Dummy inlet for the connection of a begin~ object. The signal input for
an fftin~ object is an inlet in the pfft~ subpatcher which contains the object.

Arguments

int Obligatory. Determines the inlet number of the pfft~ which will be routed
into the fftin~ object. Inlet assignment starts at one, for the leftmost inlet
in the pfft~. Multiple fftin~ objects will typically have different inlet
numbers.

symbol Specifies the window envelope function the fftin~ object will apply to
overlapping FFTs on the input signal. The options are square (i.e. no
window envelope), hanning (the default), triangle, hamming and blackman (Note:
The Blackman window should be used with an overlap of 4 or more). If the
symbol nofft is used, then the fftin~ object will not use a windowing
envelope and will not perform a Fast Fourier Transform— it will echo the
first half of its input sample window to its real output and the second half
of its input sample window to its imaginary output. This can allow you to
input raw control signals from outside the parent patcher through inlets in
the pfft~ object, provided its overlap is set to 2. Other overlap values may
not yield useful results.

Output

signal Out left outlet: This output contains the real-values resulting from the Fast
Fourier transform performed on the corresponding inlet of the pfft~. This
output frame is only half the size of the parent pfft~ object's FFT size
because the spectrum of a real input signal is symmetrical and therefore
half of it is redundant. The real and imaginary pairs for one spectrum are
called a spectral frame.

Out middle outlet: This output contains the imaginary-values resulting
from the the Fast Fourier transform performed on the corresponding inlet

Input for a patcher
loaded by pfft~ fftin~

135

of the pfft~. This output frame is only half the size of the parent pfft~
object's FFT size because the spectrum of a real input signal is symmetrical
and therefore half of it is redundant. The real and imaginary pairs for one
spectrum are called a spectral frame.

Out right outlet: A stream of samples corresponding to the index of the
current bin whose data is being sent out the first two outlets. This is a
number from 0 - (frame size - 1). The spectral frame size inside a pfft~
object's subpatch is equal to half the FFT window size.

Examples

fftin~ outputs a frequency/domain signal pair and a sync signal that indicates the bin
number

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
in Message input for a patcher loaded by poly~ or pfft
out Message output for a patcher loaded by poly~ or pfft~
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower

Input for a patcher
loaded by pfft~ fftin~

136

Tutorial 26 Frequency Domain Signal Processing with pfft~

Report information about
a patcher loaded by pfft~ fftinfo~

137

Input

bang Causes the FFT window size, the FFT frame size (i.e., the signal vector size
inside the patcher loaded by pfft~), and the FFT hop size to be sent out the
object’s outputs.

Arguments

None.

Output

int Out left outlet: The current FFT window size specified by argument to the
pfft~ object.

Out middle-left outlet: The current spectral frame size (half the FFT
window size).

Out middle-right outlet: The current FFT hop size (i.e., the window size
divided by the overlap).

Out right outlet: The full spectrum flag. It indicates whether or not the
spectral subpatch of the parent pfft~ object is processing the default half-
spectrum FFT frames, or full (mirrored) FFT spectrum frames.

Examples

fftinfo~ reports information about the FFT subpatcher in which it is located

Report information about
a patcher loaded by pfft~ fftinfo~

138

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT
Tutorial 26 Frequency Domain Signal Processing with pfft~

Output for a patcher
loaded by pfft~ fftout~

139

The fftout~ object provides an signal output to a pfft~ object; it won’t do anything if you
try to use it anywhere other than inside a patcher loaded by the pfft~ object. The fftout~
object performs an inverse Fast Fourier Transform and applies a windowing function (an
envelope), allowing the pfft~ object to manage the overlap-add of the output signal
windows.

Input

signal In left inlet: The real part of a signal that will be inverse-transformed back
into the time domain.

In right inlet: The imaginary part of a signal that will be inverse-
transformed back into the time domain.

Note that the real and imaginary inlets of fftout~ expect only the first half
of the spectrum, as output by fftin~. This half-spectrum is called a spectral
frame in pfft~ terminology.

Arguments

int Obligatory. Determines the outlet number in the pfft~ which will receive
the output of the fftout~ object. Outlet assignments start at 1 for the
leftmost outlet of pfft~. Multiple fftout~ objects will typically have different
outlet numbers.

symbol Optional. Tells fftout~ which window envelope function to use when
overlapping fft's on the input signal. The options are square (i.e. no window
envelope), hanning (the default), and hamming. If the argument nofft is used,
then the fftout~ will echo its input signal to its output without performing
a Fast Fourier transform. This allows you to output raw control signals
from the pfft~ to the parent patcher. Note that when the nofft option is
used, overlap-adding is still being performed to create the output signal.

Output

signal The fftout~ object transforms frequency domain signals back into the time
domain, at which point they are overlap-added and output by the
corresponding outlet in the pfft~ object in which the subpatcher is loaded.
The fftout~ object itself has no outlets.

Output for a patcher
loaded by pfft~ fftout~

140

Examples

fftout~ converts frequency domain signal pairs into time domain signals and sends them to
pfft~

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
out Message output for a patcher loaded by poly~ or pfft~
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT
Tutorial 26 Frequency Domain Signal Processing with pfft~

Signal-rate filter
coefficient generator filtercoeff~

141

The filtercoeff~ object is a signal-rate filter coefficient calculator for the biquad~ object. It
calculates the filter coefficients from three higher-level parameters: frequency, amplitude
and resonance (Q) or slope (S). Its internal calculations are based on those of the
filtergraph~ object.

Input

float In 1st inlet: Sets the center or cutoff frequency parameter for the filter and
causes output.

In 2nd inlet: Sets the gain parameter for the filter and causes output.

In 3rd inlet: Sets the Q (resonance) or S (slope) parameter for the filter and
causes output. (note that the term slope is only used for the third parameter
of shelving filters, and is roughly equivalent to resonance)

int Converted to float.

allpass In left inlet: The word allpass sets the filter type to allpass mode. The
frequency response of the filter is based on two parameters: cf (center
frequency, or cutoff frequency) and Q (resonance). The gain parameter is
set to unity gain (1.0). An allpass filter is designed to modify the phase
response, leaving a flat amplitude response

bandpass In left inlet: The word bandpass sets the filter type to bandpass mode. The
frequency response of the filter is based on two parameters: cf (center
frequency) and Q (resonance). The gain parameter is set to unity gain
(1.0).

bandstop In left inlet: The word bandstop sets the filter type to bandstop mode. The
frequency response of the filter is based on two parameters: cf (center
frequency) and Q (resonance). The gain parameter is set to unity gain
(1.0).

gainapass In left inlet: The word gainapass sets the filter type to allpass mode with user-
controllable gain. The frequency response of the filter is based on three
parameters: cf (center frequency, or cutoff frequency) gain, and Q
(resonance), although only the gain parameter has an effect on the
amplitude response. An allpass filter is designed to modify the phase
response, leaving a flat amplitude response

Signal-rate filter
coefficient generator filtercoeff~

142

gainbpass In left inlet: The word gainbpass sets the filter type to bandpass mode with
user-controllable gain. The frequency response of the filter is based on
three parameters: cf (center frequency) gain, and Q (resonance).

gainbstop In left inlet: The word gainbstop sets the filter type to bandstop mode with
user-controllable gain. The frequency response of the filter is based on
three parameters: cf (center frequency) gain, and Q (resonance).

gainhpass In left inlet: The word gainhpass sets the filter type to highpass mode with
user-controllable gain. The frequency response of the filter is based on
three parameters: cf (cutoff frequency) gain, and Q (resonance).

gainlpass In left inlet: The word gainlpass sets the filter type to lowpass mode with
user-controllable gain. The frequency response of the filter is based on
three parameters: cf (cutoff frequency) gain, and Q (resonance).

gainresonant In left inlet: The word gainrtesonant sets the filter type to resonant mode
(resonant bandpass filter) with user-controllable gain. The frequency
response of the filter is based on three parameters: cf (center frequency)
gain, and Q (resonance).

highpass In left inlet: The word highpass sets the filter type to highpass mode. The
frequency response of the filter is based on two parameters: cf (cutoff
frequency) and Q (resonance). The gain parameter is set to unity gain
(1.0).

highshelf In left inlet: The word highshelf sets the filter type to highshelf mode. The
frequency response of the filter is based on three parameters: cf (cutoff
frequency) gain, and S (slope).

lowpass In left inlet: The word lowpass sets the filter type to lowpass mode. The
frequency response of the filter is based on two parameters: cf (cutoff
frequency) and Q (resonance). The gain parameter is set to unity gain
(1.0).

lowshelf In left inlet: The word lowshelf sets the filter type to lowshelf mode. The
frequency response of the filter is based on three parameters: cf (cutoff
frequency) gain, and S (slope).

peaknotch In left inlet: The word peaknotch sets the filter type to peaknotch mode. The
frequency response of the filter is based on three parameters: cf (center
frequency) gain, and Q (resonance).

Signal-rate filter
coefficient generator filtercoeff~

143

resonant In left inlet: The word resonant sets the filter type to resonant mode
(resonant bandpass filter). The frequency response of the filter is based on
two parameters: cf (center frequency) and Q (resonance). The gain
parameter is set to unity gain (1.0).

Arguments

symbol Optional. A symbol argument may be used to set the default filter type
(highpass, lowpass, etc...).

int Optional. Used as a resampling factor.

Output

signal The five signal outlets output signal-rate filter coefficients for the biquad~
object.

Examples

The filtercoeff~ object lets you send sample-accurate coefficients to biquad~

See Also

allpass~ Allpass filter

Signal-rate filter
coefficient generator filtercoeff~

144

biquad~ Two-pole, two-zero filter
cascade~ A set of cascaded biquad filters
delay~ Delay line specified in samples
filtergraph~ Graphical filter editor
lores~ Resonant lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control

Graphical
filter editor filtergraph~

145

The filtergraph~ object is not a signal object per se, as it does not process audio signals by
itself, but it does react to the current MSP sampling rate in order to generate filter
coefficients for the biquad~ or cascade~ objects from higher-level parameters such as
frequency, amplitude and resonance (Q). Since the filtergraph~ object needs to use the
current sampling rate to calculate the filter response, Max/MSP must be using an audio
driver in order for the object to properly display and calculate values.

The filtergraph~ object was designed as both a display and a graphical user interface for a
variety of second order (two-pole two-zero) filters implemented using the biquad~ object.
It is also able to display multiple cascaded second order filters for use with the cascade~
object The horizontal axis of the filtergraph~ object’s display represents frequency (which
can be displayed on either a linear or logarithmic scale), while its vertical axis represents
amplitude (also displayable on either a linear or logarithmic scale). The curve displayed
reflects the frequency response of the current filter model. The frequency response is
essentially the amount that the filter will amplify or attenuate the frequencies present in
an audio signal. The biquad~ (or cascade~) object does the actual filtering, based on the
coefficients that filtergraph~ calculates and sends to it in a list.

The cutoff frequency (or center frequency) is the central frequency of a given filter's
activity. Its specific meaning is different for each filter type, but it can generally be
identified as a transitional point (or center of a peak/trough) in the graph’s amplitude
curve. In addition, it is marked in the display by a colored rectangle whose width
corresponds to the bandwidth of the filter. The bandwidth (sometimes referred to as
transition width or transitional band) is the principal range of a filter’s effect, centered on
the cutoff frequency. The edges of a filter’s bandwidth are usually defined as being
located where the frequency response has a 3dB change in amplitude from the cutoff or
center frequency. Q (also known as resonance) is another term used to describe filter
“width” although it is described in different units – as the ratio of the center/cutoff
frequency to the bandwidth. Using Q instead of bandwidth in Hz lets us move the
center/cutoff frequency while keeping a constant bandwidth in octaves. The Q parameter
for shelving filters is often called S (or slope), although it is ostensibly the same as Q. For
the most part, filtergraph~ uses bandwidth or Q, which are inversely proportional to each
other. The filter’s gain is the linear amplitude at the center or cutoff frequency. The
interpretation of the gain parameter depends somewhat on the type of filter – the gain
may also affect a shelf or large region of the filter’s response.

Input

(mouse) You can changer the filter parameters by clicking and dragging on the
filtergraph~ object’s display. By default, horizontal mouse dragging is
mapped to cutoff frequency, and vertical mouse movement is mapped to

Graphical
filter editor filtergraph~

146

gain (if gainmode is enabled). If the cursor is located directly over the edge
of a filter band, however, the band rectangle is highlighted, indicating that
clicking and dragging will map x-axis movement to adjust filter bandwidth
instead of cutoff frequency.

If multiple bandwidth regions are overlapping, you can cycle through them
by double-clicking on the topmost one. This is useful for accessing smaller
bandwidth regions that might be otherwise “covered” by a larger region.

float In 1st-5th inlets: When in display mode, a float in one of the first five
inlets changes the current value of the corresponding biquad~ filter
coefficient (a0, a1, a2, b1, and b2, respectively), recalculates the filter’s
frequency response based on these coefficients and causes a list of the
current filter coefficients to be output from the leftmost outlet.

In 6th inlet: Sets the center or cutoff frequency parameter for the filter and
causes output.

In 7th inlet: Sets the gain parameter for the filter and causes output.

In 8th inlet: Sets the Q (resonance) or S (slope) parameter for the filter and
causes output.

Note: Input to any one of the inlets will recalculate the current filter’s
graph and trigger the output.

int Converted to float.

list In left inlet: A list of five float values which correspond to biquad~ filter
coefficients sets the filtergraph~ object’s internal values for these
coefficients and causes the object to output the list out its left outlet. If
filtergraph~ is in display mode, it will display the frequency response of the
filter obtained from these coefficients. If more than five values are sent,
they are interpreted as sets of cascaded biquad coefficients (see the cascade
message).

in 6th inlet: A list of three values which correspond to center/cutoff
frequency, gain and Q/S (resonance/slope), sets these values, recalculates
the new filter coefficients and causes output. This is equivalent to the params
message.

bang In left inlet: In display mode, bang causes the filtergraph~ object to send its
internally-stored biquad coefficients out the leftmost outlet. In the

Graphical
filter editor filtergraph~

147

interactive filter modes, bang additionally causes the current filter
parameters to be sent out their respective outlets (see Output).

allpass In left inlet: The word allpass sets the filter type of the filtergraph~ object to
allpass mode.It is equivalent to the mode 9 message. The frequency response
of the filter is based on three parameters: cf (center frequency, or cutoff
frequency) gain, and Q (resonance), although only the gain parameter has
an effect on the amplitude response. An allpass filter is designed to modify
the phase response (use the phasespect 1 message to view the phase response).

analog In left inlet: The word analog, followed by a 0 or 1, toggles the analog filter
prototype parameter for the bandpass, and peaknotch filters. Unlike the
standard digital versions, these “imitation analog” filters do not have a
notch at the nyquist frequency, and thus imitate the response of a analog
filter. The imitation analog filters are slightly more computationally
expensive, so this option is set to 0 (disabled) by default.

autoout In left inlet: Toggles the automatic output on load feature. autoout 1 tells
filtergraph~ to automatically output its coefficients and parameters when a
patch is loaded. filtergraph~ saves its current state in a patcher. autoout 0
disables this feature. The default value is 1 (enabled).

bandpass In left inlet: The word bandpass sets the filter type of the filtergraph~ object
to bandpass mode. It is equivalent to the mode 3 message. The frequency
response of the filter is based on three parameters: cf (center frequency)
gain, and Q (resonance).

bandstop In left inlet: The word bandstop sets the filter type of the filtergraph~ object
to bandstop mode. It is equivalent to the mode 4 message. The frequency
response of the filter is based on three parameters: cf (center frequency)
gain, and Q (resonance).

brgb In left inlet: The word brgb, followed by three numbers between 0 and 255,
sets the color of the filtergraph~ object background (i.e., the area above the
filter curve) in RGB format. The default is 210 210 210.

cascade In left inlet: The cascade message works in display mode only. The word
cascade, followed by up to 24 groups of five float values corresponding to
filter coefficients, will display a composite filter response which shows the
multiplication of a group of biquad filters in cascade.

Graphical
filter editor filtergraph~

148

color In left inlet: The word color, followed by a number from 0 to 15, sets the
color of the filtergraph~ object to one of the 16 object colors, which are also
available using the Color submenu in the Object menu.

constraints In left inlet: The word constraints, followed by seven numbers, allows you to
constrain the frequency, amplitude and Q values within the specified
ranges. This is useful to constrain values obtained by clicking and
dragging. The first number should be an integer, and it specified the filter
number whose constraints will be set. The remaining six numbers are
floating-point values which set the minimum and maximum frequency
values, the minimum and maximum amplitude values, and the minimum
and maximum Q values, respectively. Specifying constraint values of zero
will remove the constraints for that value. The constrints message causes the
filter coefficients to be output.

display In left inlet: The word display sets the filter type of the filtergraph~ object to
display only. It is equivalent to the mode 0 message. In display mode,
filtergraph~ simply displays the frequency response for a set of five biquad~
filter coefficients.

displaydot In left inlet: The displaydot message, followed by a 0 or 1, toggles the display
of the mousable bandwidth region when filtergraph~ is in display mode.
This allows you to use filtergraph~ as an interface to design and display
your own filter algorithms. The default is disabled (by default, display
mode functions uniquely as a display).

domain In left inlet: The domain message, followed by two integer frequencies in
Hz, lets you change the frequency display range of the filtergraph~. The
default display range is from 0 Hz to half the sampling rate (the Nyquist
frequency).

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255,
sets the color of the filtergraph~ object foreground (i.e., the area below the
filter curve) in RGB format. The default is 170 170 170.

fullspect In left inlet: The word fullspect, followed by a 0 or 1, lets you select either a
half- spectrum or full spectrum display. fullspect 0 (the default) specifies a
half-spectrum from 0 Hz to the Nyquist frequency (half the sampling rate).
fullspect 1 specifies a full (mirrored) spectrum from -Nyquist to +Nyquist
(the spectrum is mirrored around 0 Hz). In full spectrum mode, the display
has a red marker at DC (0 Hz).

Graphical
filter editor filtergraph~

149

gainmode In left inlet: The word gainmode, followed by a 0 or 1, toggles the gain
parameter for the lowpass, highpass, bandpass, and bandstop filters. The
traditional definitions of these filters have a fixed gain of 1.0, but by gain-
enabling them, their amplitude response can be scaled without the
additional use of a signal multiply at the filters output.The default is 0
(disabled).

 highorder The highorder message works in display mode only. The word highorder,
followed by a list of n groups of biquad filter “a” coefficients and n-1
groups of biquad filter “b” coefficients, will display the response of an nth
order filter.

highpass In left inlet: The word highpass sets the filter type of the filtergraph~ object
to highpass mode.It is equivalent to the mode 2 message. The frequency
response of the filter is based on three parameters: cf (cutoff frequency)
gain, and Q (resonance) or S (slope - used for the shelving filters).

highshelf In left inlet: The word highshelf sets the filter type of the filtergraph~ object
to highshelf mode.It is equivalent to the mode 7 message. The frequency
response of the filter is based on three parameters: cf (cutoff frequency)
gain, and S (slope).

linmarkers In left inlet: The word linmarkers, followed by a list of up to 64 int values,
will set markers for the linear frequency display (See the markers message).
By default, the markers are set at ± SampleRate/4, SampleRate/2, and (3 *
SampleRate)/4.

logamp In left inlet: The logamp message, followed by a 0 or 1, sets the amplitude
display scale. logamp 0 sets a linear amplitude display, and logamp 1 sets a log
display scale (default).

logfreq In left inlet: The logfreq message, followed by a 0 or 1, sets the frequency
display scale. logfreq 0 sets a linear frequency display, and logfreq 1 sets a log
display scale (default).

logmarkers In left inlet: The word logmarkers, followed by a list of up to 64 int values,
will set markers for the log frequency display (See the markers message). By
default, the markers are set at± 50Hz, 500Hz and 5kHz at 44.1kHz. These
values correspond to ± 0.007124, 0.071238, and 0.712379 radians for any
sample rate.

lowpass In left inlet: The word lowpass sets the filter type of the filtergraph~ object to
lowpass mode.It is equivalent to the mode 1 message. The frequency

Graphical
filter editor filtergraph~

150

response of the filter is based on three parameters: cf (center frequency, or
cutoff frequency) gain, and Q (resonance).

lowshelf In left inlet: The word lowshelf sets the filter type of the filtergraph~ object to
lowshelf mode.It is equivalent to the mode 6 message. The frequency
response of the filter is based on three parameters: cf (center frequency, or
cutoff frequency) gain, and S (slope).

markers In left inlet: The word markers, followed by a list of up to 64 frequency
values will place visual markers (vertical lines) at these frequencies behind
the graph. The markers message will set the markers used for both linear and
logarithmic frequency displays.

mode In left inlet: The word mode, followed by a number from 0-9, sets the
current filter type. The numbers and associated filter types are:

Number Filter type

0 display only

1 lowpass

2 highpass

3 bandpass

4 bandstop

5 peaknotch

6 lowshelf

7 highshelf

8 resonant

9 allpass

In display mode, filtergraph~ displays the frequency response for a set of
five biquad~ filter coefficients. In the other modes, it graphs the frequency
response of a filter based on three parameters: cf (center frequency, or
cutoff frequency) gain, and Q (resonance) or S (slope - used for the
shelving filters).

mousemode In left inlet: The word mousemode followed by two int arguments, specifies
the interpretation of horizontal and vertical mouse movement. With one
argument, only the horizontal mouse mode is affected. The mouse mode
values are the same for both axes: (0 = off, 1 = normal, 2 = alternate).

Graphical
filter editor filtergraph~

151

For horizontal movement (specified by the first argument), normal
behavior means that clicking on the filter band and dragging horizontally
changes the filter's cutoff frequency. When set to the alternate mouse
mode (2), horizontal movement affects Q, or resonance. When turned off
(0), mouse activity along the x-axis has no effect.

For vertical movement (specified by the second argument), normal
behavior means that the y-axis is mapped to gain during clicking and
dragging activity. When the alternate mouse mode (2) is selected, vertical
movement changes the Q (resonance) setting instead. When turned off
(0), vertical mouse movement has no effect.

nfilters In left inlet: The word nfilters, followed by a number from 1 to 24, sets the
number of cascaded biquad filters displayed in the filtergraph. When using
more than one filter, the output of the filtergraph~ should be sent to a
cascade~ object instead of a biquad~.

options In left inlet: The word options, followed by five integers, allows you to set
the filter-specific options for a given filter. The first number specifies the
filter whose options will be set. The remaining four integers set the filter
mode (mode message) gain-enabling flag (gainmode message), analog filter
prototype flag (analog message) and interactive filter mode flag (displaydot
message), respectively. The options message causes the filter coefficients to
be re-evaluated and output.

params In left inlet: The word params, when followed by three numbers specifying
frequency, gain and Q, sets the filter parameters for the currently selected
filter and triggers output. When followed by four numbers specifying filter
number, frequency, gain and Q, this messages sets the filter parameters for
the filter indicated and causes output.

peaknotch In left inlet: The word peaknotch sets the filter type of the filtergraph~ object
to peaknotch mode.It is equivalent to the mode 5 message. The frequency
response of the filter is based on three parameters: cf (center frequency, or
cutoff frequency) gain, and Q (resonance).

phasespect In left inlet: The word phasespect, followed by a 0 or 1, specifies whether to
display the amplitude or phase, with respect to frequency. phasespect 0 sets a
frequency-amplitude display (default), and phasespect 1 sets a frequency-
phase display.

Graphical
filter editor filtergraph~

152

query In left inlet: The word query, followed by a float value, will cause the
amplitude and phase response of the graph at that frequency to be sent out
the sixth outlet of the filtergraph~ object as a list.

range In left inlet: The range message, followed by a float value greater than 0,
sets the amplitude display range of filtergraph~. The amplitude is displayed
from 0 to the range value along the vertical axis of the graph. (default
value 2.0)

resonant In left inlet: The word resonant sets the filter type of the filtergraph~ object
to resonant mode (resonant bandpass filter). It is equivalent to the mode 8
message. The frequency response of the filter is based on three parameters:
cf (center frequency) gain, and Q (resonance).

rgb In left inlet: The word rgb, followed by three numbers between 0 and 255,
sets the color of the filtergraph~ display. The background color for the
object display will be automatically selected. The brgb, frgb, rgb2, rgb3, rgb4,
rgb5, rgb6, and rgb7 messages can be used to set the colors of individual
portions of a filtergraph~ object display.

rgb2 In left inlet: The word rgb2, followed by three numbers between 0 and 255,
sets the color of the filtergraph~ object’s curve line (i.e., the line that
separated the areas above and below the filter curve) in RGB format. The
default is 0 0 0 (black).

rgb3 In left inlet: The word rgb3, followed by three numbers between 0 and 255,
sets the color of the filtergraph~ display markers in RGB format. The
default is 0 0 0 (black).

rgb4 In left inlet: The word rgb4, followed by three numbers between 0 and 255,
sets the color of the rectangle that outlines the filtergraph~ object display in
RGB format. The default is 0 0 0 (black).

rgb5 In left inlet: The word rgb5, followed by three numbers between 0 and 255,
sets the color of the bandwidth rectangle (and unselected tint within that
rectangle) in RGB format. The default is 76 108 172 (great blue heron).

rgb6 In left inlet: The word rgb6, followed by three numbers between 0 and 255,
sets the tint of the interior of the bandwidth rectangle when it is selected in
RGB format. The default is 210 74 54 (salmon).

rgb7 In left inlet: The word rgb7, followed by three numbers between 0 and 255,
sets the color of the filter curve for an individual filter that is highlighted

Graphical
filter editor filtergraph~

153

by moving the cursor over it. The color is specifiec, naturally, in RGB
format. The default is 255 22 22 (blood red).

set In left inlet: The word set, followed by a list of five int values which
correspond to biquad~ filter coefficients, sets the filtergraph~ object’s
internal values for these coefficients but does not cause output. If
filtergraph~ is in display mode, it will display the frequency response of the
filter obtained from these coefficients.

in 6th inlet: A list of three values which correspond respectively to
center/cutoff frequency, gain and Q/S (resonance/slope), sets these values,
recalculates the new filter coefficients but does not cause output. In display
mode this message has no effect.

setconstraints In left inlet: The word setconstraints, followed by seven numbers, allows you
to set the frequency, amplitude and Q constraint values within the
specified ranges without causing output. This is useful to constrain values
obtained by clicking and dragging. The first number should be an integer,
and it specified the filter number whose constraints will be set. The
remaining six numbers are floating-point values which set the minimum
frequency, maximum frequency, minimum amplitude, maximum
amplitude, minimum Q and maximum Q, respectively. Specifying
constraint values of zero will remove the constraints for that value.

setoptions In left inlet: The word setoptions, followed by five integers, allows you to set
the filter-specific options for a given filter without triggering output. The
first number specifies the filter whose options will be set. The remaining
four integers set the filter mode (mode message) gain-enabling flag (gainmode
message), analog filter prototype flag (analog message) and interactive filter
mode flag (displaydot message), respectively.

setparams In left inlet: The word setparams, when followed by three numbers specifying
frequency, gain and Q, sets the filter parameters for the currently selected
filter without triggering output. When followed by four numbers
specifying filter number, frequency, gain and Q, this messages sets the
filter parameters for the filter indicated, without triggering output.

(loadbang) filtergraph~ responds to a loadbang message sent to it when a patcher is
loaded (See the autoout message).

(Get Info...) Opens the filtergraph~ object’s Inspector window.

Graphical
filter editor filtergraph~

154

(preset) You can save and restore the settings of filtergraph~ using a preset object.
The preset stores the number of filters and the parameters (freqency,
amplitude, Q) and filter options (corresponding to the mode, gainmode, and
analog messages) for all filters in the graph.

Inspector

The behavior of a filtergraph~ object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any filtergraph~
object displays the filtergraph~ Inspector in the floating window. Selecting
an object and choosing Get Info… from the Object menu also displays the
Inspector.

The filtergraph~ Inspector lets you set the following attributes:

The Frequency display options allow you to set minimum and maximum
frequency ranges to display (the default values are 20 and 20000 Hz.), as
well as let you choose to view the frequencies on a logarithmic (the
default) or linear display scale.

The Amplitude display options allow you to set the minimum and
maximum amplitude display ranges (the default values 0.0625 and 16
correspond roughly to +/–24dB). The menu to the right of the number
fields lets you display the numbers on a deciBel or linear amplitude scale.
The Radio buttons allow you to also select Amplitude Response (the
default) or Phase Response (whose range is always -! to !). If you have
selected amplitude response, you may also choose to display the amplitude
on the graph using either a linear or logarithmic (i.e. deciBel) scale (the
default.

The Options section lets you set various global display and behaviour
options. Checking the Output Coefficients on Load checkbox will cause the
filtergraph~ object to respond to the loadbang message and output its filter
coefficients when a patcher file is opened. Checking the Show Numerical
Display option makes filtergraph~ display the numerical values for
frequency, gain and Q values while clicking and dragging the bandwidth
rectangle with the mouse. Checking the Show deciBel Values option sets
the filtergraph~ object to display the numerical values for gain change in
deciBels represented by the small ticks at the right-hand side of the object's
display.

Graphical
filter editor filtergraph~

155

The numerical field in the Filters section lets you set the number of
cascaded second-order (biquad) filters which the graph will display. By
default, filtergraph~ displays one filter, but a whopping maximum of 24
filters may be simultaneously displayed. Note that when using more than
one filter, the coefficient output of filtergraph~ must be sent to a cascade~
object instead of a biquad~.

The Currently Selected Filter section lets you set the following filter-
specific attributes for the filter you select in the menu:

The Filter Type pop-up menu sets the kind of filter type to be displayed by
the filtergraph~ object. The filter types are Display, Lowpass, Highpass,
Bandpass, Bandstop, Peak/Notch (the default), Low Shelf, High Shelf,
Resoonant, or Allpass. If you are operating in Display mode, the checkbox
labeled Interactive User Filter is used to enable bandwidth rectangle when
in display mode. In any of the filter modes, you can used the Gain-Enabled
checkbox to enable gain scaling in the display. The Imitation Analog
Flavor checkbox allows you to optionally use alternate filter coefficient
calculations for the Bandpass and Peak/Notch filters.

The three parameters, Frequency, Amplitude and Q or S let you set the
three filter parameters for the specified filter. The menu next to the
amplitude value lets you input the amplitude on either a linear or deciBel
scale.

The Constraints let you set maximum and minimum ranges for mousing
and input constraints for the frequency, amplitude and Q values. By
entering a value of zero, or typing the word “None” you remove the
constraint for the given field. The amplitude constraints may be edited on
a linear or deciBel scale.

The Color pop-up menu lets you use a swatch color picker or RGB values to
specify the colors used for display by the filtergraph~ object. These are
described above, in the Input section.

The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Graphical
filter editor filtergraph~

156

Arguments

None.

Output

list Out leftmost outlet: a list of 5 floating-point filter coefficients for the
biquad~ object. Coefficients output in response to mouse clicks and
changes in the coefficient or filter parameter inlets. They are also output
when the audio is turned on, and optionally when the patch is loaded if the
automatic output option is turned on (see autoout message, above).

Out sixth outlet: a list of 2 floating-point values (amplitude, phase) output
in response to the query message (see above).

float Out second through fifth outlets: Frequency, Gain (linear), Resonance (Q)
and Bandwidth output in response to clicks on the filtergraph~ object.

int Out rightmost (seventh) outlet: Filter number. Indicates which of the
cascaded biquad filters is being highlighted and/or edited.

Graphical
filter editor filtergraph~

157

Examples

The filtergraph~ object greatly simplifies working with the biquad~ object

See Also

allpass~ Allpass filter
biquad~ Two-pole, two-zero filter
cascade~ A set of cascaded biquad filters
delay~ Delay line specified in samples
filtercoeff~ Signal-rate filter coefficient generator
lores~ Resonant lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control
zplane~ Graph filter poles and zeros on the Z-plane

Compute “running phase” of successive
phase deviation frames frameaccum~

158

Input

signal The input to be accumulated.

Arguments

int Optional. A non-zero integer argument will cause the accumulated values
to be wrapped between –π and π. This optional feature is to reduce
roundoff error when useing frameaccum~ to accumulate phase values.

Output

signal The frameaccum~ object computes a running phase by keeping a sum of
the values in each position of its incoming signal vectors. In other words,
for each signal vector, the first sample of its output will be the sum of all of
the first samples in each signal vector it has received, the second sample of
its output will be the sum of all the second samples in each signal vector,
and so on. When used inside a pfft~ object, it can keep a running phase of
the FFT because the FFT size is equal to the signal vector size.

Examples

frameaccum~ computes the running phase between frames of spectral data

Compute “running phase” of successive
phase deviation frames frameaccum~

159

See Also

framedelta~ Compute phase deviation between successive FFT frames
Tutorial 26 Frequency Domain Signal Processing with pfft~

Compute phase deviation between
successive FFT frames framedelta~

160

Input

signal The input on which the deviation will be computed.

Arguments

None.

Output

signal The framedelta~ object computes a running phase deviation by subtracting
values in each position of its previously received signal vector from the
current signal vector. In other words, for each signal vector, the first
sample of its output will be the first sample in the current signal vector
minus the first sample in the previous signal vector, the second sample of
its output will be the second sample in the current signal vector minus the
second sample in the previous signal vector, and so on. When used inside a
pfft~ object, it keeps a running phase deviation of the FFT because the FFT
size is equal to the signal vector size.

Examples

framedelta~ computes the difference between successive frames of FFT data

See Also

frameaccum~ Compute “running phase” of successive phase deviation frames
Tutorial 26 Frequency Domain Signal Processing with pfft~

Time-domain
frequency shifter freqshift~

161

Input

signal In left inlet: The signal present at the left inlet is frequency-shifted by the
argument or value given in the right inlet.

In right inlet, a signal in the right inlet will be used as a frequency amount in
Hertz by which the left input signal will be shifted.

float In right inlet: a float in the right inlet will be used as a frequency amount in
Hertz by which the left input signal will be shifted.

int In right inlet: converted to float.

Arguments

float Optional. A numerical argument will be used as the frequency shift in Hertz.
The default is zero.

int Converted to float.

Output

signal The output is the frequency shifted signal.

Time-domain
frequency shifter freqshift~

162

Examples

freqshift~ shifts the frequencies of an incoming sound more efficiently than if you build it
yourself from scratch

See Also

fbinshift~ Frequency-domain frequency shifter for pfft~.
gizmo~ Frequency-domain pitch shifter for pfft~.
hilbert~ Phase quadrature filter

Convert frequency to MIDI
note numbers at signal-rate ftom~

163

Input

signal A signal representing a frequency value. It is converted to a MIDI pitch value
(from 0 to 127) and output as a signal.

Arguments

None.

Output

signal The MIDI note value that corresponds to the input frequency is output as a
signal. When an input frequency falls between two equal tempered pitches, the
fractional part of the MIDI value is included.

Examples

What’ll it be? Contemporary, Classical or Baroque?

See Also

expr Evaluate a mathematical expression
ftom Convert frequerncy to a MIDI note number
mtof Convert a MIDI note number to frequency
mtof~ Convert a MIDI note number to frequency at signal-rate

Exponential scaling
volume slider gain~

164

Input

signal In left inlet: The input signal to be scaled by the slider.

int In left inlet: Sets the value of the slider, ramps the output signal to the level
corresponding to the new value over the specified ramp time, and outputs
the slider’s value out the right outlet.

float In left inlet: Converted to int.

In right inlet: Sets the ramp time in milliseconds. The default is 10
milliseconds.

bang Sends the current slider value out the right outlet.

color In left inlet: The word color, followed by a number from 0 to 15, sets the
color of the striped center portion of gain~ to one of 16 object colors,
which are also available by choosing Color… from the Max menu.

inc The word inc, followed by a float, sets the increment value used to calculate
the output scale factor based on the input value. The default value is
1.071519. See the Inspector section for an explanation of the calculation.

resolution The word resolution, followed by a number, sets the sampling interval in
milliseconds. This controls the rate at which the display is updated as well as
the rate that numbers are sent out the gain~ object’s outlet.

scale The word scale, followed by a float, sets the base output value used to
calculate the output scale factor based on the input value. The default value
is 7.94231. See the Inspector section for an explanation of the calculation.

set In left inlet: The word set, followed by a number, sets the value of the
slider, ramps the output signal to the level corresponding to the new value
over the specified ramp time, but does not output the slider’s value out the
right outlet.

size In left inlet: The word size, followed by a number, sets the range of gain~ to
the number. The values of the slider will then be 0 to the range value
minus 1. The default value is 158.

Exponential scaling
volume slider gain~

165

Inspector

The behavior of a gain~ object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any gain~ object
displays the gain~ Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The gain~ Inspector lets you set four parameters—the Range, the second is
the Base Value, and the Increment. In the following expression that
calculates the output scale factor based on the input value (the same as the
linedrive object), the range is a, the base value is b, the increment is c, the
input is x, e is the base of the natural logarithm (approx. 2.718282) and the
output is y.

y = b e-a log c ex log c

For more information about these parameters, see the linedrive object.

The default values of range (158), base value (7.94231), and increment
(1.071519) provide for a slider where 128 is full scale (multiplying by 1.0),
0 produces a zero signal, and 1 is 75.6 dB below the value at 127. A change
of 10 in the slider produces a 6 dB change in the output. In addition, since
the range is 158, slider values from 129 to 157 provide 17.4 dB of
headroom. When the slider is at 157, the output signal is 17.4 dB louder
than the input signal.

You can also set the Interpolation Time by entering a value which will set
the interpolation time for the gain~ object The default value is 10
milliseconds.

The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Exponential scaling
volume slider gain~

166

Output

signal Out left outlet: The input signal, scaled by the current slider value as x in
the equation shown above.

int Out right outlet: The current slider value, when dragging on the slider with
the mouse or when gain~ receives an int or float in its left inlet.

Examples

Specialized fader to scale a signal exponentially or logarithmically

See Also

linedrive Scale integers for use with line~

Route a signal to
one of several outlets gate~

167

Input

int In left inlet: Determines the outlet that will send out the signal coming in
the right inlet. If the number is 0 or negative, the right inlet is shut off and
a zero signal is sent out. If the number is greater than the number of
outlets, the signal is sent out the rightmost outlet. If a signal is connected to
the left inlet, gate~ ignores int or float messages received in its left inlet.

float Converted to int.

signal In left inlet: If a signal is connected to the left inlet, gate~ operates in a
mode that uses signal values to determine the outlet that will receive its
input signal (the signal coming in the right inlet). If the signal coming in
the left inlet is 0 or negative, the inlet is shut off and a zero signal is sent
out. If it is greater than or equal to 1, but less than 2, the input signal goes
to the left outlet. If the signal is greater than or equal to 2 but less than 3,
the input signal goes to the next outlet to the right, and so on. If the signal
in the left inlet is greater than the number of outlets, the rightmost outlet
is used.

In right inlet: The input signal to be passed through to one of the gate~
object’s outlets, according to the most recently received int or float in the
left inlet, or the value of the signal coming in the left inlet.

If the signal network connected to the right inlet of gate~ contains a
begin~ object—and a signal is not connected to the left inlet of the
gate~—all processing between the begin~ outlet and the gate~ inlet will be
turned off when gate~ is shut off.

Arguments

int Optional. The first argument specifies the number of outlets. The default is
1. The second argument sets the outlet that will initially send out the input
signal. The default is 0, where all signals are shut off and zero signals are
sent out all outlets. If a signal is connected to the left inlet, the second
argument is ignored.

Route a signal to
one of several outlets gate~

168

Output

signal Depending on the value of the left inlet (either signal or number), one of
the object’s outlets will send out the input signal and rest will send out zero
signals, or (if the inlet is closed) all outlets will send out zero signals.

Examples

gate~ routes the input signal to one of its outlets, or shuts it off entirely

See Also

selector~ Assign one of several inputs to an outlet
begin~ Define a switchable part of a signal network
Tutorial 4 Fundamentals: Routing signals

Frequency-domain
pitch shifter for pfft~ gizmo~

169

The gizmo~ object implements a frequency-domain pitch shifter. It works by analyzing the
frequency bins of an FFT’d signal, finding the peaks in the spectrum, and shifting them
along the frequency axis to transpose the sound. The gizmo~ object must be used inside a pfft~
with an overlap of 4 or more – using an overlap of 2 will produce quite audible amplitude
modulation. When used outside a pfft~ it does nothing.

Input

signal In left inlet: The signal present at the left inlet is the real part of a frequency-
domain signal coming from a fftin~ object inside a pfft~.

In middle inlet, The signal input to the middle inlet is the imaginary part of a
frequency-domain signal coming from a fftin~ object inside a pfft~. Both real
and imaginary inputs must be connected for gizmo~ to work.

float In rightmost inlet: a float in the right inlet will be used as a frequency scalar
for pitch-shifting. Scaling the pitch by 2 will raise it one octave, sclaing the
pitch by 0.5 will lower it one octave.

int In right inlet: converted to float.

freqshift In left inlet: The word freqshift followed by a numerical value representing a
positive or negative frequency in Hertz will be used as a frequency offet for
the scaled amplitude peaks in the frequency spectrum. This corresponds to a
frequency-shift of the transposed signal (see the freqshift~ or fbinshift~ objects
for additional information).

Arguments

float or int Optional. A numerical argument will be used as the default pitch shift scalar.
The default is 1.0 (no pitch scaling).

Output

signal The output is the pitch-shifted complex signal. The left outlet is the real
component, and the right outlet is the imaginary component. These may be
connected to the real and imaginary inputs of a fftout~ object inside a pfft~.

Frequency-domain
pitch shifter for pfft~ gizmo~

170

Examples

gizmo~ shifts the pitch of an incoming sound so you can use it for harmonization effects

See Also

fbinshift~ Frequency-domain frequency shifter for pfft~.
freqshift~ Time-domain frequency shifter.
hilbert~ Phase quadrature filter

Variable-rate looping
sample playback groove~

171

Input

signal In left inlet: Defines the sample increment for playback of a sound from a
buffer~. A sample increment of 0 stops playback. A sample increment of 1
plays the sample at normal speed. A sample increment of -1 plays the sample
backwards at normal speed. A sample increment of 2 plays the sample at twice
the normal speed. A sample increment of .5 plays the sample at half the
normal speed. The sample increment can change over time for vibrato or
other types of speed effects. The groove~ object uses the buffer~ sampling rate
to determine playback speed.

If a loop start and end have been defined for groove~ and looping is turned on,
when the sample playback reaches the loop end the sample position is set to
the loop start and playback continues at the current sample increment.

In middle inlet: Sets the starting point of the loop in milliseconds.

In right inlet: Sets the end point of the loop in milliseconds.

int or float In left inlet: Sets the sample playback position in milliseconds. 0 sets the
playback position to the beginning.

In middle inlet: Sets the starting point of the loop in milliseconds. If a signal is
connected to the inlet, int and float numbers are ignored.

In right inlet: Sets the end point of the loop in milliseconds. If a signal is con-
nected to the inlet, int and float numbers are ignored.

loop The word loop, followed by 1, turns on looping. loop 0 turns off looping. By
default, looping is off.

loopinterp The word loopinterp, followed by 1, enables interpolation about start and end
points for a loop. loop 0 turns off loop interpolation. By default, loop
interpolation is off.

reset Clears the start and end loop points.

set The word set, followed by a symbol, switches the buffer~ object containing the
sample to be used by groove~ for playback.

setloop The word setloop, followed by two numbers, sets the start and end loop points
in milliseconds.

Variable-rate looping
sample playback groove~

172

startloop Causes groove~ to begin sample playback at the starting point of the loop. If
no loop has been defined, groove~ begins playing at the beginning.

(mouse) Double-clicking on a groove~ object opens the sample display window of the
buffer~ object associated with the groove~ object.

Arguments

symbol Obligatory. Names the buffer~ object containing the sample to be used by
groove~ for playback.

int Optional. A second argument may specify the number of output channels: 1,
2, or 4. The default number of channels is 1. If the buffer~ being played has
fewer channels than the number of groove~ output channels, the extra
channels output a zero signal. If the buffer~ has more channels, channels are
mixed.

Output

signal Out left outlet: Sample output. If groove~ has two or four output channels, the
left outlet plays the left channel of the sample.

Out middle outlets: Sample output. If groove~ has two or four output channels,
the middle outlets play the channels other than the left channel.

Out right outlet: Sync output. During the loop portion of the sample, this
outlet outputs a signal that goes from 0 when the loop starts to 1 when the loop
ends.

Examples

Variable-rate looping
sample playback groove~

173

See Also

2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
play~ Position-based sample playback
record~ Record sound into a buffer
Tutorial 14 Sampling: Playback with loops
Tutorial 20 MIDI control: Sampler

Phase quadrature
filter hilbert~

174

Input

signal In left inlet: The signal that will be hilbert-transformed. The Hilbert
transform, or phase quadrature, produces signals that are 90 degrees out of
phase with each other.

Arguments

None.

Output

signal Out left outlet: The “real” part of the hilbert-transformed signal. It will be
90 degrees out of phase from the “imaginary” part.

Out right outlet: The “imaginary” part of the hilbert-transformed signal. It
will be 90 degrees out of phase from the “real” part.

Examples

It seems Pythagoras was right.

See Also

fbinshift~ Frequency-domain frequency shifter for pfft~..
freqshift~ Time-domain frequency shifter
gizmo~ Frequency-domain pitch shifter for pfft~.

Control a ReWire host’s
transport hostcontrol~

175

hostcontrol~ allows you to send commands to the ReWire host to start and stop the
transport, set the transport position, change the tempo, change the time signature, and set
loop points.

Input

int 1 starts playing from the beginning. 0 stops playing and resets the position
to the beginning.

pause The word pause stops playback without changing the current position.

resume The word resume starts playback from the current position.

seek The word seek, followed by a number specifying ticks (in 1 PPQ), sets the
current transport position. For example, to seek to the start of the fifth
measure if the time signature is 4/4 the send the message “seek 16”.

tempo The word tempo, followed by a number (in samples per beat), changes the
host’s tempo.

bpm The word bpm, followed by a number (in beats per minute), changes the
host’s tempo.

timesig The word timesig, followed by two numbers that specify numerator and
denominator values, changes the host’s time signature. For example, to set
the time signature to 3/4 send the message timesig 3 4.

loop The word loop, followed by one or three numbers, controls the host’s loop
state. If the first number is non-zero, looping will be enabled—otherwise, it
will be turned off. An optional second and third number may be used to
specify the loop start and end points, expressed in 1 PPQ ticks. If the
second and third numbers are not present, the loop points are not
changed.

Arguments

None.

Output

None.

Control a ReWire host’s
transport hostcontrol~

176

See Also

hostphasor~ Get synchronization signal from a ReWire host
hostsync~ Get transport control info from a ReWire host

Get synchronization signal
from a ReWire host hostphasor~

177

hostphasor~ outputs an audio-rate sawtooth wave that is sample-synchronized to the beat
of the ReWire host sequencer. The waveform can be fed to other audio objects to lock
audio processes to the audio of the ReWire host. For example, try driving techno~ with
hostphasor~ for instant accompaniment of your favorite sequence.

Input

None.

Arguments

None.

Output

signal The output of hostphasor~ is analogous to phasor~: it ramps from 0 to 1.0
over the period of a beat. If the current host environment does not support
synchronization or the ReWire host’s transport is stopped, the output of
hostphasor~ is a zero signal.

See Also

hostcontrol~ Control the ReWire host transport from Max/MSP
hostsync~ Get transport control info from a ReWire host

Get transport control info
from a ReWire host hostsync~

178

The hostsync~ object provides information about the current state of the ReWire host. Sample
count information is available in any host; even Max. The validity of the other information
output by the object is dependent upon what synchronization capabilities the ReWire host
implements; the value from the flags (10th) outlet tells you what information is valid. Output
from hostsync~ is continuous when the scheduler is running. Alternatively, you can bang its
inlet to report the current values.

Input

bang A bang will cause the hostsync~ object to report its transport state.

Arguments

None.

Output

int Out left outlet: 1 if the ReWire host’s transport is currently running; 0 if it is
stopped or paused.

int Out 2nd outlet: The current bar count in the ReWire host sequence, starting at
1 for the first bar. If the ReWire host does not support synchronization, there
is no output from this outlet.

int Out 3rd outlet: The current beat count in the ReWire host sequence, starting
at 1 for the first beat. If the ReWire host does not support synchronization,
there is no output from this outlet.

float Out 4nd outlet: The current beat fraction, from 0 to 1.0. If the ReWire host
does not support synchronization, there is no output from this outlet.

list Out 5th outlet: The current time signature as a list containing numerator
followed by denominator. For instance, 3/4 time would be output as the list 3
4. If the ReWire host does not support time signature information, there is no
output from this outlet.

float Out 6th outlet: The current tempo in samples per beat. This number can be
converted to beats per minute using the following formula: (sampling-rate /
samples-per-beat) * 60. If the ReWire host does not support synchronization,
there is no output from this outlet.

Get transport control info
from a ReWire host hostsync~

179

float Out 7th outlet: The current number of beats, expressed in 1 PPQ. This
number will contain a fractional part between beats. If the ReWire host does
not support synchronization, there is no output from this outlet.

int Out 8th outlet: The current sample count, as defined by the ReWire host.

list Out 9th outlet: The loop info output as a list of three numbers containing loop
on/off state (0,1), the loop start point (in 1PPQ ticks), and the loop stop point
(in 1PPQ ticks). For example, if the time signature was 4/4 and looping was
on from the start of the fifth measure for four bars the list would be 1 16 32.

int Out 10th outlet: A number representing the validity of the other information
coming from hostsync~. Mask with the following values to determine if the
information from hostsync~ will be valid.

Sample Count Valid 1 (always true)

Beats Valid 2 (2nd, 3rd, 4th, and 7th outlets valid)

Time Signature Valid 4 (5th outlet valid)

Tempo Valid 8 (6th outlet valid)

Transport Valid 16 (left outlet valid)

Loop Info Valid 64 (9th outlet valid)

See Also

hostcontrol~ Control the ReWire host transport from Max/MSP
hostphasor~ Like phasor~, but beat-synchronized with ReWire host

Inverse fast
Fourier transform ifft~

180

Input

signal In left inlet: The real part of a complex signal that will be inverse
transformed.

In right inlet: The imaginary part of a complex signal that will be inverse
transformed.

If signals are connected only to the left inlet and left outlet, a real IFFT
(inverse Fast Fourier transform will be performed. Otherwise, a complex
IFFT will be performed.

Arguments

int Optional. The first argument specifies the number of points (samples) in
the IFFT. It must be a power of two. The default number of points is 512.
The second argument specifies the number of samples between successive
IFFTs. This must be at least the number of points, and must be also be a
power of two. The default interval is 512. The third argument specifies the
offset into the interval where the IFFT will start. This must either be 0 or a
multiple of the signal vector size. ifft~ will correct bad arguments, but if
you change the signal vector size after creating an ifft~ and the offset is no
longer a multiple of the vector size, the ifft~ will not operate when signal
processing is turned on.

Output

signal Out left outlet: The real part of the inverse Fourier transform of the input.
The output begins after all the points of the input have been received.

Out middle outlet: The imaginary part of the inverse Fourier transform of
the input. The output begins after all the points of the input have been
received.

Out right outlet: A sync signal that ramps from 0 to the number of points
minus 1 over the period in which the IFFT output occurs. When the IFFT is
not being output (in the case where the interval is larger than the number
of points), the sync signal is 0.

Inverse fast
Fourier transform ifft~

181

Examples

Using fft~ and ifft~ for analysis and resynthesis

See Also
cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT

Message input for a patcher
loaded by poly~ or pfft~ in

182

Input

None.

Arguments

int Obligatory. Each in object is identified by a unique index number which
specifies which message inlet in a poly~ or pfft~ object it corresponds to.
The first outlet is 1.

Output

message Each in object in a patcher loaded by the poly~ or pfft~ objects appears as an
inlet at the top of the object. Messages received at the first message inlet of
the poly~ or pfft~ object are sent to the first in object (i.e., the in 1 object) in
the loaded patcher, and so on. The number of total inlets in a poly~ or pfft~
object is determined by whether there are a greater number of in~ or in
objects in the loaded patch (e.g., if your loaded poly~ patcher has three in~
objects and only two in objects, the poly~ object will have three inlets, two
of which will accept both signals and anything else, and a third inlet which
only takes signal input).

Examples

Message inlets of the poly~ object correspond to the in objects inside the loaded patcher

See Also

in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~

Message input for a patcher
loaded by poly~ or pfft~ in

183

out~ Signal output for a patcher loaded by poly~
pfft~ Spectral processing manager for patchers
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
Tutorial 21 MIDI control: Using the poly~ object

Signal input for a patcher
loaded by poly~ or pfft~ in~

184

Input

None.

Arguments

int Obligatory. Each in~ object is identified by a unique index number which
specifies which signal inlet in a poly~ object it corresponds to. The first
inlet is 1.

Output

signal Each in~ object in a patcher loaded by the poly~ object appears as an inlet
at the top of the poly~ object. Signals received at the first message inlet of
the poly~ object are sent to the first in~ object (i.e., the in~ 1 object) in the
loaded patcher, and so on. The number of total inlets in a poly~ object is
determined by whether there are a greater number of in~ or in objects in
the loaded patch (e.g., if your loaded patcher has three in~ objects and only
two in objects, the poly~ object will have three inlets, two of which will
accept both signals and anything else, and a third inlet which only takes
signal input).

Examples

Signal inlets of the poly~ object correspond to the in objects inside the loaded patcher

See Also

in Message input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~

Signal input for a patcher
loaded by poly~ or pfft~ in~

185

out~ Signal output for a patcher loaded by poly~
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
Tutorial 21 MIDI control: Using the poly~ object

Sample playback
without interpolation index~

186

Input

signal In left inlet: The sample index to read from a buffer~ object’s sample
memory.

int In right inlet: The channel (1-4) of the buffer~ to use for output. By
default, index~ uses the first channel of the buffer~.

set The word set, followed by the name of a buffer~ object, causes index~ to read
from that buffer~.

(mouse) Double-clicking on index~ opens an editing window where you can view
the contents of its associated buffer~ object.

Arguments

symbol Obligatory. Names the buffer~ object whose sample memory is used by
index~ for playback.

int Optional. Following the name of the buffer~, you may specify which
channel to use within the associated buffer~. The default channel is 1.

Output

signal The output consists of samples at the sample indices specified by the input.
No interpolation is performed if the input sample index is not an integer.

Examples

Look up specific samples in the buffer~, using index~

Sample playback
without interpolation index~

187

See Also

2d.wave~ Two-dimensional wavetable
cycle~ Table lookup oscillator
buffer~ Store audio samples
buffir~ Buffer-based FIR filter
fft~ Fast Fourier transform
wave~ Variable-size wavetable
Tutorial 13 Sampling: Recording and playback

Report information
about a sample info~

188

Input

bang In left inlet: Causes a report of information about a sample contained in
the associated buffer~ object.

(mouse) Double-clicking on info~ opens an editing window where you can view the
contents of its associated buffer~ object.

Arguments

symbol Obligatory. Names the buffer~ object for which info~ will report
information.

Output

Most of the information reported by info~ is taken from the audio file most recently read
into the associated buffer~. If this information is not present, only the sampling rate is
sent out the left outlet. No output occurs for any item that’s missing from the sound file.

float Out left outlet: The sampling rate of the sample.

Out 3rd outlet: Sustain loop start, in milliseconds.

Out 4th outlet: Sustain loop end, in milliseconds.

Out 5th outlet: Release loop start, in milliseconds.

Out 6th outlet: Release loop end, in milliseconds.

Out 7th outlet: Total time of the associated buffer~ object, in milliseconds.

Out 8th outlet: Name of the most recently read audio file.

Report information
about a sample info~

189

list Out 2nd outlet: Instrument information about the sample, as follows:

1. The MIDI pitch of the sample.

2. The detuning from the original MIDI note number of the
sample, in pitch bend units.

3. The lowest MIDI note number to use when playing this
sample.

4. The highest MIDI note number to use when playing this
sample.

5. The lowest MIDI velocity to use when playing this sample.

6. The highest MIDI velocity to use when playing this sample.

7. The gain of the sample (0-127).

Examples

Check sample rate of a sample; use other information contained in a sample

See Also

buffer~ Store audio samples
mstosamps~ Convert milliseconds to samples
sfinfo~ Report audio file information
Tutorial 14 Sampling: Playback with loops
Tutorial 20 MIDI control: Sampler

Interpolating
oscillator bank ioscbank~

190

Input

signal or float In left inlet: Sets the frequency of the oscillator whose index is currently
referenced to the current floating-point value of the signal. The default value
is 0.

In 2nd inlet: Sets the magnitude (amplitude) of the oscillator whose index is
currently referenced.

In 3rd inlet: If frame sync is enabled using the framesync 1 message, a signal in
the range 0-1.0 sets the phase of the oscillator currently being referenced.

In 4th inlet: Sets the index of the oscillator currently being referenced.

float In 3rd inlet: A float in the range 0-1.0 sets the phase of the oscillator currently
being referenced.

clear The word clear sets the frequency of all oscillators to zero and zeros all
amplitudes.

copybuf In left inlet: The word copybuf, followed by a symbol that specifies a buffer,
copies 4096 samples from the buffer into the ioscbank~ object’s internal
wavetable. An optional second integer argument specifies the position in the
buffer at which samples are loaded (offset).

framesync The word framesync, followed by a non-zero number, enables frame
synchronous operation. When frame synchronous operation is enabled, a
given index's values will only change or begin their interpolated ramps to the
next value when the index input signal is 0 (or once per n sample frame).
Otherwise, a given index's values will change or begin their interpolated ramps
to the next value when the index input signal is equal to that index. The
default is off.

freqsmooth The word freqsmooth, followed by a number, sets the number of samples across
which frequency smoothing is done. The default is 1 (no smoothing).

magsmooth The word magsmooth, followed by a number, sets the number of samples across
which magnitude (amplitude) smoothing is done on an oscillator. The default
is 0 (no amplitude smoothing).

Interpolating
oscillator bank ioscbank~

191

set The word set, followed by pairs of floating-point values, sets the frequency and
amplitude of an oscillator in the oscillator bank. A list of n pairs will set the
first n oscillators in the ioscbank~ object and zero the amplitude of all others.

silence The word silence zeros the amplitude of all the oscillators.

size The word size, followed by a number, sets the number of oscillators. The default
is 64.

Arguments

int Optional. The number of oscillators. The default is 1.

int Optional. The number of samples across which frequency smoothing is done.

int Optional. The number of samples across which amplitude smoothing is done.

Output

signal A waveform consisting of the sum of the specified frequencies and amplitudes.

Interpolating
oscillator bank ioscbank~

192

Examples

ioscbank~ lets you sound multiple interpolated oscillators with one object

See Also

oscbank~ Non-interpolating oscillator bank

Distort a
sawtooth waveform kink~

193

Input

signal In left inlet: The input to kink~ should be a sawtooth waveform output from a
phasor~ object that repeatedly goes from 0 to 1.

In right inlet: The multiplier that affects the slope of the output between an
output (Y) value of 0 and 0.5. After the output reaches 0.5, the waveform will
increase to 1 so that the entire output moves from 0 to 1 in the same period of
time as the input. A slope multiplier of 1 (the default) produces no distortion
Slope multipliers below 1 have a slower rise to 0.5 than the input, and slope
multipliers above 1 have a faster rise to 0.5 than the input.

float In right inlet: Same as signal. If a signal is attached to the right inlet, float input
is ignored.

Arguments

float Optional. Sets the default slope multiplier. If a signal is attached to the right
inlet, this argument is ignored.

Output

signal The output of kink~ should be fed to the right inlet of cycle~ (at zero
frequency) to produce a distorted sine wave (a technique known as phase
distortion synthesis). As the slope multiplier in the right inlet of kink~ deviates
from 1, additional harmonics are introduced into the waveform output of
cycle~. If the slope multiplier is rapidly increased and then decreased using a
line~, the output of cycle~ may resemble an attack portion of an instrumental
sound.

Distort a
sawtooth waveform kink~

194

Examples

Typical use of kink~ between phasor~ and cycle~.

See Also

phasor~ Sawtooth wave generator
triangle~ Triangle/ramp wavetable

Visual RMS
level indicator levelmeter~

195

Input

signal The RMS amplitude of the incoming signal is displayed by the needle of
the on-screen level meter.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB
values for the background color of the levelmeter ~ object. The default
value is set by brgb 104 104 104.

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the LED color for the lowest “cold” range of the levelmeter ~
object. The default value is set by frgb 0 168 0.

interval The word interval, followed by a number, sets the update time interval, in
milliseconds, of the levelmeter~ display. The minimum update interval is
10 milliseconds, the maximum is 2 seconds, and the default is 100
milliseconds. This message also sets the rate at which levelmeter ~ sends out
the peak value received in that time interval.

markers The word markers, followed by a list of numbers representing deciBel values,
sets the locations of the small dots along the colored stripe on the
levelmeter~ object. Up to 8 markers may be diaplayed.

range The word range, followed by two numbers representing deciBel values, sets
the display range of the levelmeter~ object. The default range is –40 dB to
12 dB.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the RGB
values for the color for the upper “hot” range of the levelmeter ~ object.
The default value is set by rgb2 255 153 0.

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the RGB
values for the color for the “over” indicator of the levelmeter ~ object. The
default value is set by rgb3 255 0 0.

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the RGB
values for the color for upper-middle “warm” range of the levelmeter ~
object. The default value is set by rgb4 153 186 0.

rgb5 The word rgb5, followed by three numbers between 0 and 255, sets the RGB
values for the color for the lower-middle “tepid” range of the levelmeter ~
object. The default value is set by rgb5 217 217 0.

Visual RMS
level indicator levelmeter~

196

Inspector

The behavior and appearance of the levelmeter~ object can be edited using
its Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any levelmeter~
object displays the levelmeter~ Inspector in the floating window. Selecting
an object and choosing Get Info… from the Object menu also displays the
Inspector.

The levelmeter~ Inspector lets you set the update time interval, in
milliseconds, of the display by typing a number into the Interval box. The
default interval is 20 ms.

The Ballistics section of the Inspector lets you change the levelmeter~
object’s visual response by modifying the Attack Time and Release Time in
milliseconds, as well as the deciBel Offset.

The display range of the levelmeter~ object can me modified in the The
Range section of the Inspector, by choosing a minimum and maximum
display range in decibels or linear amplitude.

The Color pull-down menu lets you use a swatch color picker or RGB
values to specify the colors used for display by the levelmeter~ object. These
are the Background, Foreground, Needle, Markers, Border, as well as the
colored indicator zones corresponding to Overload, Warning (Hot),
Warm, Tepid and Cool.

The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

float The RMS (root mean square) value in deciBels of the signal for the current
update interval is sent out the outlet when audio processing is on.

Visual RMS
level indicator levelmeter~

197

Examples

levelmeter~ displays and sends out the RMS amplitude of a signal in deciBels

See Also

average~ Multi-mode signal average
meter~ Visual peak level indicator
scope~ Signal oscilloscope
Tutorial 23 Analysis: Viewing signal data

Linear ramp generator line~

198

Input

list The first number specifies a target value and the second number specifies a
total amount of time (in milliseconds) in which line~ should reach the
target value. In the specified amount of time, line~ generates a ramp signal
from its current value to the target value.

line~ accepts up to 64 target-time pairs in a list, to generate compound
ramps. (An example would be 0 1000 1 1000, which would go from the
current value to 0 in a second, then to 1 in a second.) Once one of the
ramps has reached its target value, the next one starts. A subsequent list,
float, or int in the left inlet clears all ramps yet to be generated.

float or int In left inlet: The number is the target value, to be arrived at in the time
specified by the number in the right inlet. If no time has been specified
since the last target value, the time is considered to be 0 and the output
signal jumps immediately to the target value.

In right inlet: The number is the time, in milliseconds, in which the output
signal will arrive at the target value.

pause In left inlet: Pauses the internal ramp but does not change the target value
nor clear pending target-time pairs. line~ will continue outputting
whatever value was its current value when the pause message was received,
until either it receives a resume message or until a new ramp is input.

resume In left inlet: Resumes the internal ramp and subsequent pending target-
time pairs if the line~ object was paused as a result of the pause message.

stop In left inlet: Stops the internal ramp and clears pending target-time pairs.
line~ will continue outputting whatever value was its current value when
the stop message was received, resetting its target value to that value.

Arguments

float or int Optional. Sets an initial value for the signal output. The default value is 0.

Output

signal Out left outlet: The current target value, or a ramp moving toward the
target value according to the currently stored value and the target time.

Linear ramp generator line~

199

bang Out right outlet: When line~ has finished generating all of its ramps, bang is
sent out.

Examples

Linearly changing signal, or a function made up of several line segments

See Also

adsr~ ADSR envelope generator
click~ Create an impulse
curve~ Exponential ramp generator
Tutorial 2 Fundamentals: Adjustable oscillator

Scale numbers exponentially
for use with line~ linedrive

200

Input

int or float In left inlet: The number is converted according to the following
expression

y = b e-a log c ex log c

where x is the input, y is the output, a, b, and c are the three typed-in
arguments, and e is the base of the natural logarithm (approximately
2.718282).

The output is a two-item list containing y followed by the delay time most
recently received in the right inlet.

int In right inlet: Sets the current delay time appended to the scaled output. A
connected line~ object will ramp to the new target value over this time
interval.

Arguments

int or float Obligatory. The first argument is the maximum input value, followed by
the maximum output value. The third argument specifies the nature of the
scaling curve. The third argument must be greater than 1. The larger the
value, the more steeply exponential the curve is. An appropriate value for
this argument is 1.06. The fourth argument is the initial delay time in
milliseconds. This value can be changed via the right inlet.

Output

list When an int or float is received in the left inlet, a list is sent out containing a
scaled version of the input (see the formula above) and the current delay
time.

Scale numbers exponentially
for use with line~ linedrive

201

Examples

Use linedrive for exponential value scaling

See Also

expr Evaluate a mathematical expression
line~ Linear ramp generator

Logarithm of a signal log~

202

Input

signal In left inlet: log~ sends out a signal that is the logarithm of the input
signal, to the base specified by the typed-in argument or the value most
recently received in the right inlet. If a value in the signal is less than or
equal to 0, log~ sends out a value of 0.00000001.

float or int In right inlet: Sets the base of the logarithm. The default is 0, which is
equivalent to the natural logarithm (log to the base e, or 2.71828182). log
to the base of 1 is always 0.

Arguments

float or int Optional. Sets the base of the logarithm. The default value is 0.

Output

signal The logarithm of the input signal to the base specified by the initial
argument or the value most recently received in the right inlet.

Examples

Logarithm of a signal, to a specified base; can be used for creating curves

See Also

pow~ Signal power function
curve~ Exponential ramp generator
sqrt~ Square root of a signal

Transfer function
lookup table lookup~

203

Input

signal In left inlet: Signal values are mapped by amplitude to values stored in a
buffer~. Each sample in the incoming signal within the range –1 to 1 is
mapped to a corresponding value in the current table size number of
samples of the buffer~. Signal values between –1 and 0 are mapped to the
first half of the total number of samples after the current sample offset.
Signal values between 0 and 1 are mapped to the next half of the samples.
Input amplitude exceeding the range from –1 to 1 results in an output of
0.

In middle inlet: Sets the offset into the sample memory of a buffer~ used to
map samples coming in the left inlet. The sample at the specified offset
corresponds to an input value of –1.

In right inlet: Sets the number of samples in a buffer~ used for the table.
Samples coming in the left inlet between –1 and 1 will be mapped by
amplitude to the specified range of samples. The default value is 512.
lookup~ changes the table size before it computes each vector but not
within a vector. It uses the first sample in a signal vector coming in the
right inlet as the table size.

int or float The settings of offset and table size can be changed with an number in the
middle or right inlets. If a signal is connected to one of these inlets, a
number in the corresponding inlet is ignored.

set The word set, followed by a symbol, changes the associated buffer~ object.

(mouse) Double-clicking on lookup~ opens an editing window where you can view
the contents of its associated buffer~ object.

Arguments

symbol Obligatory. Names the buffer~ object whose sample memory is used by
lookup~ for table lookup.

int Optional. After the buffer~ name, you may specify the sample offset in the
sample memory of the buffer~ used for a signal value of –1. The default
offset is 0. The offset value is followed by an optional table size that
defaults to 512. lookup~ always uses the first channel in a multi-channel
buffer~.

Transfer function
lookup table lookup~

204

Output

signal Each sample in the incoming signal within the range –1 to 1 is mapped to
a corresponding position in the current table size number of samples of the
named buffer~ object, and the stored value is sent out.

Examples

See Also

buffer~ Store audio samples
peek~ Read and write sample values
Tutorial 12 Synthesis: Waveshaping

Resonant
lowpass filter lores~

205

Input

signal In left inlet: Any signal to be filtered.

In middle inlet: Sets the lowpass filter cutoff frequency.

In right inlet: Sets a “resonance factor” between 0 (minimum resonance) and
1 (maximum resonance). Values very close to 1 may produce clipping with
certain types of input signals.

int or float An int or float can be sent in the middle or right inlets to change the cutoff fre-
quency or resonance. If a signal is connected one of the inlets, a number
received in that inlet is ignored.

clear Clears the filter’s memory. Since lores~ is a recursive filter, this message may
be necessary to recover from blowups.

Arguments

int or float Optional. Numbers set the initial cutoff frequency and resonance. The default
values for both are 0. If a signal is connected to the middle or right inlet, the
argument corresponding to that inlet is ignored.

Output

signal The filtered input signal. The equation of the filter is

yn = scale * xn - c1 * yn-1 + c2 * yn-2

where scale, c1, and c2 are parameters calculated from the cutoff frequency
and resonance factor.

Resonant
lowpass filter lores~

206

Examples

Specify cutoff frequency and resonance of lowpass filter

See Also

biquad~ Two pole, two zero filter
buffir~ Buffer-based FIR filter
comb~ Comb filter
filtergraph~ Graphical filter editor
onepole~ Single-pole lowpass filter
reson~ Resonant bandpass filter

Signal routing and
mixing matrix matrix~

207

The matrix~ object is an array of signal connectors and mixers (adders). It can have any
number of inlets and outlets. Signals entering at each inlet can be routed to one or more
of the outlets, with a variable amount of gain. If an outlet is connected to more than one
inlet, its output signal is the sum of the signals from the inlets.

The matrix~ object has two modes of operation: “binary” and non-binary. In binary mode,
connections act like simple switches, and always have unity gain. This mode is faster, but
audible clicks will occur if you're listening to the outputs of this object when connections
are made and broken. In non-binary mode, connections are gain stages, i.e. they can scale
the signal by some amount other than zero and one. They also provide an adjustable
ramping time over which the gain values are changed. This allows signals to be switched
without creating audible clicks.

Input

signal In any inlet: Signals present at an inlets are sent to the outlets to which
they are connected, scaled by the gain values of the connections.

list In left inlet: A list of three ints may be used to connect inlets and outlets
when the matrix~ object is in binary mode. The first int specifies the inlet,
the second int specifies the outlet, and a third int is used to specify
connection or disconnection. If the third int is nonzero value, the inlet of
the first int will be connected to the outlet specified by the second int. A
zero value for the third int in the list disconnects the inlet-outlet pair.

If the matrix~ object is operating in non-binary mode, A list of two ints
followed by a float sets the gain of the connection between inlet i and
outlet o to the value specified by the float.

Note: To specify the gain of individual connections, you must use three-
element list messages rather than the connect message. Connections formed
with the connect message always have a gain specified by the third argument
initially given to the matrix~ object. However, subsequent list messages can
alter the gain of connections formed with the connect message. The addition
of an optional fourth element to the list message can be used to specify a
ramp time, in milliseconds, for the individual connection (e.g., 1 2 .8 500
would connect the first inlet to the second outlet and specify a gain of .8
and a ramp time of .5 seconds).

print In left inlet: The word print causes the current state of all matrix~ object
connections to be printed in the Max window in the form of a list for each

Signal routing and
mixing matrix matrix~

208

connection. The list consists of two numbers which specify the inlet and
outlet, followed by a float which specifies the gain for the connection.

dump In left inlet: The word dump causes the current state of all matrix~ object
connections to be sent out the rightmost outlet of the object in the form
of a list for each connection. The list consists of two numbers which
specify the inlet and outlet, followed by a float which specifies the gain for
the connection. Note that in non-binary mode the current gains are not
necessarily the same as the target gains of all matrix~ object connections,
since a connection's gain can ramp to its new target over time.

dumptarget In left inlet: The word dumptarget causes the target state of all matrix~ object
connections to be sent out the rightmost outlet of the object in the form
of a list for each connection. The list consists of two numbers which
specify the inlet and outlet, followed by a float which specifies the target
gain for the connection. Note that in non-binary mode the target gains
are not necessarily the same as the current gains, which can be accessed
with the dump message.

clear In left inlet: The word clear removes all connections.

connect In left inlet: The word connect, followed by one or more pairs of ints, will
connect any inlet specified by the first int from the outlet specified by the
second int. Multiple connections may be made by adding additional int
pairs to the message. Inlets and outlets are numbered from left to right,
starting at zero. For example, the message connect 1 0 1 1 would connect the
second inlet from the left to the leftmost outlet and the second outlet from
the left.

disconnect In left inlet: The word disconnect, followed by one or more pairs of ints, will
disconnect any inlet specified by the first int from the outlet specified by
the second int. Multiple disconnections may be made by adding additional
int pairs to the message.

ramp In left inlet: The word ramp, followed by a number, sets the time in
milliseconds use to change gain values when the matrix~ object is in non-
binary mode. The default millisecond value is 10.

Arguments

int Obligatory. The first argument specifies the number of inlets.

int Obligatory. The second argument specifies the number of outlets.

Signal routing and
mixing matrix matrix~

209

float Optional. If a float value is provided as a third argument, matrix~ operates
in its non-binary mode. The argument sets the gain value that will be used
when connections are created.

Output

signal The output signals for each outlet are the sum of their connected inputs,
scaled by the gain values of the connections.

Examples

Multichannel audio routing

See Also

gate~ Route a signal to one of several outlets
matrixctrl Matrix switch control
receive~ Receive signals without patch cords
selector~ Assign one of several inputs to an outlet
send~ Transmit signals without patch cords

Compare two signals,
output the maximum maximum~

210

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet,
or a constant value received in the right inlet. The greater of the two values
is sent out the outlet.

In right inlet: The signal is used for comparison with the signal coming
into the left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming
into the left inlet. If a signal is also connected to the right inlet, a float or int
is ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the
left inlet. If a signal is connected to the right inlet, the argument is
ignored.

Output

signal The greater of the two signal values received in the left and right inlets is
sent out.

Examples

Find the maximum of two signals

See Also

<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals

Compare two signals,
output the maximum maximum~

211

==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
minimum~ Compare two signals, output the minimum

Visual peak
level indicator meter~

212

Input

signal The peak amplitude of the incoming signal is displayed by the LEDs of the
on-screen level meter.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB
values for the background color of the meter~ object. The default value is
set by brgb 104 104 104.

dbperled The word dbperled, followed by a number between 1 and 12, sets the
amount of signal level in deciBels represented by each LED. By default
each LED represents a 3dB change in volume from its neighboring LEDs.

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the LED color for the lowest “cold” range of the meter~ object.
The default value is set by frgb 0 168 0.

interval The word interval, followed by a number, sets the update time interval, in
milliseconds, of the meter~ display. The minimum update interval is 10
milliseconds, the maximum is 2 seconds, and the default is 50 milliseconds.
This message also sets the rate at which meter~ sends out the peak value
received in that time interval.

numhot The word numhot, followed by a number between 0 and 20, sets the total
number “hot” warning LEDs displayed on the meter~ object
(corresponding to the color set by the rgb2 message). The default number is
3.

numleds The word numleds, followed by a number between 10 and 20, sets the total
number of LEDs displayed on the meter~ object. The default number of
LEDs is 12.

numtepid The word numtepid, followed by a number between 0 and 20, sets the total
number “tepid” mid-range LEDs displayed on the meter~ object
(corresponding to the color set by the rgb5 message). The default number is
3.

numwarm The word numwarm, followed by a number between 0 and 20, sets the total
number “warm” lower-mid-range LEDs displayed on the meter~ object
(corresponding to the color set by the rgb4 message). The default number is
3.

Visual peak
level indicator meter~

213

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the RGB
values for the LED color for the upper “hot” range of the meter~ object.
The default value is set by rgb2 255 153 0.

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the RGB
values for the LED color for the “over” indicator of the meter~ object. The
default value is set by rgb3 255 0 0.

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the RGB
values for the LED color for upper-middle “warm” range of the meter~
object. The default value is set by rgb4 153 186 0.

rgb5 The word rgb5, followed by three numbers between 0 and 255, sets the RGB
values for the LED color for the lower-middle “tepid” range of the meter~
object. The default value is set by rgb5 217 217 0.

(mouse) When the patcher window is unlocked, you can re-orient a meter~ from
horizontal to vertical by dragging its resize area and changing its shape.

Inspector

The behavior of a meter~ object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any meter~ object
displays the meter~ Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The meter~ Inspector lets you set the update time interval, in milliseconds,
of the display by typing a number into the Interval box. The default
interval is 100 ms.

The various Appearance options in the meter~ Inspector let you set the
Total Number of LEDs displayed on the meter~ object. The meter~ object
can have a minimum of 10 and a maximum of 20 LEDs; there are 12 LEDs
by default. You can also set how much volume each LED represents by
changing the dB Per LED value. By default each LED represents a 3dB
change in volume. The Number of Hot LEDs, Number of Tepid LEDs, and
Number of Warm LEDs boxes let you set the number of LEDS in each of
the volume ranges, corresponding to the Warning (Hot), Tepid and Warm
colors, respectively (see Color, below). By default there are three LEDs in

Visual peak
level indicator meter~

214

each of these color regions—all remaining LEDs use the color of the
Foreground (Cold) color region.

The Color pull-down menu lets you use a swatch color picker or RGB
values to specify the colors used for display by the meter~ object.
Background sets the meter~ object’s background color. The default
background color is 104 104 104. The remaining menu choices set the
colors of the various ranges of LEDs, from lowest to highest. Foreground
(Cold) sets the color for the lowest range of LEDs on the meter~ object.
The default value is 0 168 0. Tepid sets the LED color for the lower-
midrange range group of LEDs. The default value is 153 186 0. Warm sets
the LED color for the upper-mid range of LEDs. The default value is 217
217 0. Warning (Hot) sets the LED color for the upper range of the meter~
object. The default value is 255 153 0. Overload sets the LED color for the
“over” indicator of the meter~ object. The default value is 255 0 0.

The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

float The peak (absolute) value received in the previous update interval is sent
out the outlet when audio processing is on.

Visual peak
level indicator meter~

215

Examples

meter~ displays and sends out the peak amplitude of a signal

See Also

average~ Multi-mode signal average
scope~ Signal oscilloscope
Tutorial 23 Analysis: Viewing signal data

Compare two signals,
output the minimum minimum~

216

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet,
or a constant value received in the right inlet. The lesser of the two values
is sent out the outlet.

In right inlet: The signal is used for comparison with the signal coming
into the left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming
into the left inlet. If a signal is also connected to the right inlet, a float or int
is ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the
left inlet. If a signal is connected to the right inlet, the argument is
ignored.

Output

signal The lesser of the two signal values received in the left and right inlets is
sent out.

Examples

 Find the minimum of two signals

See Also

<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals

Compare two signals,
output the minimum minimum~

217

==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
maximum~ Compare two signals, output the maximum

Compute the minimum and
maximum values of a signal minmax~

218

Input

signal Signal to be evaluated for maximum and minimum values.

bang Sends floating-point values corresponding to the minimum and maximum
signal values out the 3rd and 4th outputs.

reset Resets the current minimum and maximum values to the default (0).

Arguments

None.

Output

signal Out 1st outlet: Signal value which corresponds to the minimum signal
value received since startup or the last reset message.

Out 2nd outlet: Signal value which corresponds to the maximum signal
value received since startup or the last reset message.

float Out 3rd outlet: When minmax~ receives a bang message, a floating-point
value which corresponds to the minimum signal value received since
startup or the last reset message is output.

Out 4th outlet: When minmax~ receives a bang message, a floating-point
value which corresponds to the maximum signal value received since
startup or the last reset message is output.

Examples

Find the hi/low peaks of a signal

Compute the minimum and
maximum values of a signal minmax~

219

See Also

meter~ Visual peak level indicator
peakamp~ See the maximum amplitude of a signal
snapshot~ Convert signal values to numbers

Convert milliseconds
to samples mstosamps~

220

Input

float or int Millisecond values received in the inlet are converted to a number of
samples at the current sampling rate and sent out the object’s right outlet.
The output might contain a fractional number of samples. For example, at
44.1 kHz sampling rate, 3.2 milliseconds is 141.12 samples.

signal Incoming millisecond values in the signal are converted to a number of
samples at the current sampling rate and output as a signal out the
mstosamps~ object’s left outlet. The output may contain a fractional
number of samples.

Arguments

None.

Output

signal Out left outlet: The number of samples corresponding to the millisecond
values in the input signal.

float Out right outlet: The number of samples corresponding to the millisecond
value received as a float or int in the inlet.

Examples

Time expressed in milliseconds comes out expressed in samples

See Also

dspstate~ Report current DSP settings
sampstoms~ Convert samples to milliseconds

Convert a MIDI note number to
frequency at signal rate mtof~

221

Input

signal A signal representing a MIDI note number value (from 0 to 127). The
corresponding frequency is output as a signal

Arguments

None.

Output

signal The frequency corresponding to the received MIDI pitch value, output as a
signal.

Examples

Design a vibrato that has an even width with respect to perceived pitch

Convert a MIDI note number to
frequency at signal rate mtof~

222

See Also

expr Evaluate a mathematical expression
ftom Convert frequency to a MIDI note number
ftom~ Convert frequerncy to a MIDI note number at signal rate
mtof Convert a MIDI note number to frequency

Disable signal processing
in a subpatch mute~

223

Input

int 1 turns off the signal processing in all objects contained in the subpatch
connected to the mute~ object’s outlet, 0 turns it back on.

list Sending the list 1 1 to the mute~ object will mute any subpatchers of the
patcher object to which the message is sent. Similarly, sending the list 0 1 to
the mute~ object will unmute any subpatchers of the patcher object.

Arguments

None.

Output

Connect the mute~ object’s outlet to any inlet of a subpatch you wish to
control. You can connect mute~ to as many subpatch objects as you wish;
however, mute~ does not work with patchers inside bpatcher objects.

Examples

You can mute all processing in any patcher or other subpatch

See Also

begin~ Define a switchable part of a signal network
pass~ Eliminate noise in a muted subpatcher
Tutorial 5 Fundamentals: Turning signals on & off

Java in MSP mxj~

224

The mxj~ object (and its Max equivalent mxj) instantiate specially-written Java classes and
acts as a Max-level peer object, passing data that originates in Max/MSP to the Java object
and vice versa. The form that an mxj~ object takes—the number of inlets, outlets and the
messages it understands—is determined by the Java class that it instantiates. Unlike the
Max mxj object, the mxj~ object is able to perform operations on signal vectors in an MSP
processing chain.

Using mxj~ requires that the host computer have a recent version of the Java Virtual
Machine (JVM) installed. Macintosh users can ensure that they have the most up-to-date
version of the JVM by running Software Update from the System Preferences. By
default, Windows XP does not have a version of the JVM installed. As of the writing of
this document the most recent version of the JVM can be downloaded from this link:

http://java.sun.com/j2se/1.4.2/download.html

Max 4.6 includes a directory called "java-doc", which can be found on Windows machines
at

C:\Program Files\Common Files\Cycling '74\java-doc

and on Macintosh machines at

/Applications/Max4.6/java-doc

The following important subdirectories are in the java-doc directory:

classes contains the source code and class files of the example Java classes that are
included with Max/MSP 4.5.

help contains the help files that are associated with the example Java classes.
Exploring these patches is a good, quick way to see how mxj~ has extended
and will extend the Max universe.

doc/tutorial contains a step-by-step tutorial that leads you through the process of
creating your first Java class to the application of advanced mxj~
programming techniques. The tutorial is in HTML format.

doc/api contains html files that specify mxj~’s Application Programming Interface
(API). These pages will serve as an invaluable resource when you are
coding your own Java classes.

Java in MSP mxj~

225

doc/ide contains example projects for some of the Integrated Development
Environments (IDEs) we think you may want to use to create Java classes.

doc/mxj~ examples contains example classes for signal processing

lib contains the code libraries that the mxj~ object uses to bridge the worlds of
Max and Java.

In addition, a file named max.java.config.txt. also is located in the java
directory This file allows you to specify which diretories should be in Java’s
classpath—a concept roughly analogous to the Max search path.

Input

various The number of inlets that an instance of mxj~ creates and the messages
that it will respond to are determined by declarations made in the peer Java
class.

viewsource The viewsource message brings up a text editor window and loads the source
code for the peer Java object. If the source code is not in the same
directory as the peer class’s .java file, a decompilation of the class file is
attempted and the resulting decompiled source is presented. From within
the editor window it’s possible to make edits to the source, save the file,
and recompile the class.

_zap When a _zap message is sent to an mxj~ object with Java peer class Foo, the
next mxj~ object that’s instantiated with the same peer Java class Foo (ie
typing in an object box “mxj~ Foo”) will cause the class to reload itself
from disk. This is most useful in a programming context: if one makes a
change to Foo.java and recompiles a new Foo.class the _zap message allows
one to create an instance of the new class without having to quit and
restart the Max environment. Without sending the _zap message Max
would simply use the cached definition of the class that was loaded when a
Foo object was instantiated prior to the changes being made.

Arguments

symbol The mxj~ object must be given the name of a valid Java class as the first
argument. The Java class file must exist somewhere within the classpath,
and it must be a class that was designed for use with the mxj~ object (the
class must subclass com.cycling74.max.MaxObject.)

Java in MSP mxj~

226

attributes The mxj~ object supports the definition of attributes within the Java code
for a peer class. The attributes that are settable at the time of instantiation
using the @ paradigm. For instance, if a particular class Foo defined an
integer attribute called intBar, one could create an instance of the class
with the attribute set to the value 74 by typing mxj~ Foo @intBar 74 in an
object box.

Output

various The number of outlets that an instance of mxj~ creates is determined by
declarations made in the constructor of the peer Java class. The furthest
outlet to the right may or may not be an info outlet whose sole
responsibility is to report information about the attributes when queried.

Examples

An mxj~ object producing noise

See Also

mxj Java in Max

White noise generator noise~

227

Input

None.

Arguments

None.

Output

signal The noise~ object generates a signal consisting of uniformly distributed
random (white noise values between –1 and 1.

Examples

Random samples create white noise, which can be filtered in various ways

See Also

biquad~ Two-pole, two-zero filter
pink~ Pink noise generator
reson~ Resonant bandpass filter
Tutorial 3 Fundamentals: Wavetable oscillator

Scale on the basis of
maximum amplitude normalize~

228

Input

signal In left inlet: The input signal is normalized—scaled so that its peak amplitude
is equal to a specified maximum.

In right inlet: The maximum output amplitude; an over-all scaling of the
output.

float In right inlet: The maximum output amplitude may be sent as a float instead of
a signal. If a signal is connected to the right inlet, a float received in the right
inlet is ignored.

reset In left inlet: The word reset, followed by a number, resets the maximum input
amplitude to the number. If no number follows reset, or if the number is 0, the
maximum input amplitude is set to 0.000001.

Arguments

float Optional. The initial maximum output amplitude. The default is 1.

Output

signal The input signal is scaled by the maximum output amplitude divided by the
maximum input amplitude.

Examples

When precise scaling factor varies or is unknown, normalize~ sets peak amplitude

Scale on the basis of
maximum amplitude normalize~

229

See Also

*~ Multiply two signals

Signal monitor and
constant generator number~

230

number~ has two different display modes. In Signal Monitor Mode it displays the value of the
signal received in the left inlet. In Signal Output Mode it displays the value of the float or int
most recently received in the left inlet, or entered directly into the number~ box (the signal
being sent out the left outlet).

Input

signal Any signal, the value of which is sampled and sent out the right outlet at
regular intervals. When number~ is in Signal Monitor display mode, the signal
value is displayed.

float In left inlet: The value is sent out the left outlet as a constant signal. When
number~ is in Signal Output display mode, the value is displayed. If the current
ramp time is non-zero, the output signal will ramp between its previous value
and the newly set value.

In right inlet: Sets a ramp time in milliseconds. The default time is 0.

int Converted to float.

list The first number sets the value of the signal sent out the left outlet, and the
second number sets the ramp time in milliseconds.

(mouse) Clicking on the triangular area at the left side of number~ will toggle between
Signal Monitor display mode (green waveform) and Signal Output display
mode (yellow or green downward arrow). When in Signal Output display
mode, clicking in the area that displays the number changes the value of the
signal sent out the left outlet of number~ and/or selects it for typing.

(typing) When a number~ is highlighted (indicated by a yellow downward arrow),
numerical keyboard input changes its value. Clicking the mouse or pressing
Return or Enter stores a pending typed number and sends it out the left outlet
as the new signal value.

allow The word allow, followed by a number, sets what display modes can be used.
allow 1 restricts number~ to signal output display mode. allow 2 restricts number~
to input monitor display mode. allow 3 allows both modes, and lets the user
switch between them by clicking on the left triangular area of number~.

Signal monitor and
constant generator number~

231

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB
values for the background color of the number~ box. The default value is white
(brgb 255 255 255).

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the number values displayed by the number~ box. The default value is
black (frgb 0 0 0).

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the RGB
values for the number values displayed by the number~ box when it is
highlighted or being updated. The default value is black (rgb2 0 0 0).

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the RGB
values for the background color of the number~ box when it is highlighted or
being updated. The default value is white (rgb3 255 255 255).

mode The word mode, followed by a number, sets the current display mode, if it is
currently allowed (see the allow message). mode 1 sets signal output display
mode. mode 2 sets signal input monitor display mode.

min The word min, followed by an optional number, sets the minimum value of
number~ for signal output. Note that unlike a floating-point number box, the
minimum value of number~ is not restricted to being an integer value. If the
word min is not followed by a number, any minimum value is removed.

max The word max, followed by an optional number, sets the maximum value of
number~ for signal output. Note that unlike a floating-point number box, the
maximum value of number~ is not restricted to being an integer value. If the
word max is not followed by a number, any maximum value is removed.

interval The word interval, followed by a number, sets the sampling interval in
milliseconds. This controls the rate at which the display is updated when
number~ is input monitor display mode, as well as the rate that numbers are
sent out the object’s right outlet.

flags The word flags, followed by a number, sets characteristics of the appearance and
behavior of number~. The characteristics (which are described under
Arguments. below) are set by adding together values that designate the desired
options, as follows: 4=Bold type, 64=Send on mouse-up only, 128=Can’t
change with mouse. For example, flags 196 would set all of these options.

Signal monitor and
constant generator number~

232

Inspector

The behavior of a number~ object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector... from the Windows menu, selecting any number~ object
in the patcher window opens an Inspector panel which lets you change the
behavior of that object. Selecting an object and choosing Get Info… from the
Object menu also displays the Inspector.

The number~ Inspector lets you set the following attributes:

You can set the range for stored, displayed, typed, and passed-through values
by typing values into the Range Min. and Max. boxes. If the No Min. and No
Max. checkboxes are checked (the default state), the number~ objects will have
their minimum and maximum values set to “None.” Unchecking these boxes
sets the minimum and maximum values to 0.

The Options section of the Inspector lets you set the display attributes of the
number~ object. Other options available in the Inspector are: Bold (to display
in bold typeface), Draw Triangle (to have an arrow pointing to the number,
giving it a distinctive appearance), Output Only on Mouse-Up (to send a
number only when the mouse button is released, rather than continuously),
Can’t Change (to disallow changes with the mouse or the computer keyboard),
and Transparent (to display only the number in the number~ object and not
the box, so that the number box resembles a comment object).

The Display Style pull-down menu lets you select the way that number values
are represented. Decimal is the default method of displaying numbers. Hex
shows numbers in hexadecimal, useful for MIDI-related applications. Roland
Octal shows numbers in a format used by some hardware devices where each
digit ranges from 1 to 8; 11 is 0 and 88 is 63. Binary shows numbers as ones
and zeroes. MIDI Note Names shows numbers according to their MIDI pitch
value, with 60 displayed as C3. Note Names C4 is the same as MIDI Note
Names except that 60 is displayed as C4. With all display modes, numbers
must be typed in the format in which they are displayed.

Mode lets you check boxes to select Signal Monitor or Signal Output modes.
Both modes are checked by default, but at least one mode must be checked.

Interval sets the sampling interval in milliseconds. This controls the rate at
which the display is updated when number~ is input monitor display mode, as
well as the rate that numbers are sent out the object’s right outlet. The default
is 250 ms.

Signal monitor and
constant generator number~

233

The Color option lets you use a swatch color picker or RGB values used to
display the number~ box and its background in its normal and highlighted
forms. Number sets the color for the number displayed (default 0 0 0),
Background sets the color for the number~ box object itself (default 221 221
221), Highlighted Number sets the color of the number display when the
number box is selected or its values are being updated (default 0 0 0), and
Highlighted Background sets the color of the number~ box when it is
highlighted or being updated (default 221 221 221).

The font and size of a number~ box can be changed with the Font menu.

The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before
you opened the Inspector window by choosing Undo Inspector Changes
from the Edit menu while the Inspector is open.

Arguments

None.

Output

signal Out left outlet: When audio is on, number~ sends a constant signal out its left
outlet equal to the number most recently received in the left inlet (or entered
by the user). It sends out this value independent of its signal input, and whether
or not it is currently in Signal Output display mode. If the ramp time most
recently received in the right inlet is set to a non-zero value, the output will
interpolate between its previous value and a newly set value over the specified
time.

float Out right outlet: Samples of the input signal are sent out at a rate specified by
the interval message.

Signal monitor and
constant generator number~

234

Examples

Several uses for the number~ object

See Also

line~ Linear ramp generator
sig~ Constant signal of a number
snapshot~ Convert signal values to numbers
Tutorial 23 Analysis: Viewing signal data

OctiMax 4-band
Compressor omx.4band~

235

Input

signal Audio input, the signal or pair of signals to be compressed.

inagc_range The word inagc_range, followed by a number, sets the maximum amount of
gain in dB applied by the input compressor . The compression ratio is fixed
at infinity:1.

inagc_b1_atk The word inagc_b1_atk, followed by a number, sets the attack rate for the
input compressor. The attack rate determines how quickly the compressor
applies gain reduction. The value range is 0-150 on a logarithmic scale,
with larger values indicating faster attack.

inagc_b1_rel The word inagc_b1_rel, followed by a number, sets the release rate for the
input compressor. The release rate determines how quickly the compressor
returns to unity gain. The value range is 0-150 on a logarithmic scale, with
larger values indicating faster release.

mbagc_range The word mbagc_range, followed by a number, sets the maximum amount of
gain in dB applied by the multiband compressor . This affects all four
frequency bands. The compression ratio is fixed at infinity:1.

mbagc_b1_atk The word mbagc_b1_atk, followed by a number, sets the attack rate for band
1. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

mbagc_b2_atk The word mbagc_b2_atk, followed by a number, sets the attack rate for band
2. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

mbagc_b3_atk The word mbagc_b3_atk, followed by a number, sets the attack rate for band
3. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

mbagc_b4_atk The word mbagc_b4_atk, followed by a number, sets the attack rate for band
4. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

OctiMax 4-band
Compressor omx.4band~

236

mbagc_b1_rel The word mbagc_b1_rel, followed by a number, sets the release rate for band
1. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b2_rel The word mbagc_b2_rel, followed by a number, sets the release rate for band
2. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b3_rel The word mbagc_b3_rel, followed by a number, sets the release rate for band
3. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b4_rel The word mbagc_b4_rel, followed by a number, sets the release rate for band
4. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b1_drv The word mbagc_b1_drv, followed by a number, sets the gain in dB applied
to band 1 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

mbagc_b2_drv The word mbagc_b2_drv, followed by a number, sets the gain in dB applied
to band 2 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

mbagc_b3_drv The word mbagc_b3_drv, followed by a number, sets the gain in dB applied
to band 3 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

mbagc_b4_drv The word mbagc_b4_drv, followed by a number, sets the gain in dB applied
to band 4 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

outmix1 The word outmix1, followed by a number, sets the gain in dB applied to
band 1 after compression.

outmix2 The word outmix2, followed by a number, sets the gain in dB applied to
band 2 after compression.

OctiMax 4-band
Compressor omx.4band~

237

outmix3 The word outmix3, followed by a number, sets the gain in dB applied to
band 3 after compression.

outmix4 The word outmix4, followed by a number, sets the gain in dB applied to
band 4 after compression.

lim_drive The word lim_drive, followed by a number, sets the overall gain in dB before
peak limiting is applied.

ngenabled The word ngenabled, followed by a 1 or 0, turns the noise gate on or off. A
noise gate is effective for reducing background hiss when no other signal is
present. omx.4band~ features two noise gates: one that operates on the
entire signal, and one that only affects higher frequencies, such as hiss.

ngthresh1 The word ngthresh1, followed by a number, sets the threshold level (in dB
below full scale) at which the overall noise gate will be engaged.

ngthresh2 The word ngthresh2, followed by a number, sets the threshold level (in dB
below full scale) at which the a noise gate will be applied to the treble
frequencies only.

gating_threshold The word gating_threshold, followed by a number, sets the release gate
threshold (in dB below full scale). When the signal is below this threshold,
the release time of the compressor will be slowed by a factor of 3.

agcThreshold The word agcThreshold, followed by a number, sets the compressor threshold
(in dB below full scale). This is the main compression threshold. Any signal
above the threshold will be reduced, and any signal below the threshold will
be amplified, according to the range and ratio parameters.

meters The word meters, followed by a 1 or 0, turns the metering output on or off.
When metering is on, a list of values will be sent from the rightmost outlet
at a rate specified by the meterRate message. These values describe the current
state of various internal levels of the compressor, and can be used to drive
GUI objects to provide visual feedback.

meterRate The word meterRate, followed by a number, specifies the interval (in
milliseconds) at which the meter data described above will be sent.

saveSettings: The word saveSettings causes all parameter values to be sent out the third
outlet.

OctiMax 4-band
Compressor omx.4band~

238

Arguments

None.

Output

signal Out leftmost two outlets: the input signals (if present), with dynamics processing
applied.

list Out third outlet: parameter values in response to saveSettings message.

Out fourth outlet: meter data. When metering is turned on, lists of values will be
output that describe various internal levels. See the description of the meters
message, above.

See Also

omx.5band~ OctiMax 5-band Compressor
omx.comp~ OctiMax Compressor
oms.peaklim~ OctiMax Peak Limiter

OctiMax 5-band
Compressor omx.5band~

239

Inputs

signal Audio input, the signal or pair of signals to be compressed.

inagc_range The word inagc_range, followed by a number, sets the maximum amount of
gain in dB applied by the input compressor .

inagc_ratio The word inagc_ratio, followed by a number, sets the numerator of the
compressor gain reduction ratio, from 1:1 to Infinite:1.

inagc_threshold The word inagc_threshold, followed by a number, sets the compression
threshold level (in dB below full scale) for the input compressor.

inagc_atk The word inagc_b1_atk, followed by a number, sets the attack rate for the
input compressor. The attack rate determines how quickly the compressor
applies gain reduction. The value range is 0-150 on a logarithmic scale,
with larger values indicating faster attack.

inagc_rel The word inagc_b1_rel, followed by a number, sets the release rate for the
input compressor. The release rate determines how quickly the compressor
returns to unity gain. The value range is 0-150 on a logarithmic scale, with
larger values indicating faster release.

inagc_progressive The word inagc_progressive, followed by a 1 or 0, enables or disables the
Progressive Release mode, which causes the input compressor to release
faster during heavy gain reduction.

mbrange The word mbrange, followed by a number, sets the maximum amount of
gain in dB applied by the multiband compressor . This limits the gain that
is applied when the signal is below the compression threshold. Note that
this limiting takes place before the ratio is applied. For example,: If range is
set to 24 dB, and the ratio is 2:1, the most gain amplification you can get
(after the ratio is applied) is in fact 12 dB.

mbratio The word mbagc_ratio, followed by a number, sets the numerator of the
compressor gain reduction ratio, from 1:1 to Infinite:1.

mbagc_b1_threshold The word mbagc_b1_threshold, followed by a number, sets the compression
threshold level (in dB below full scale) for band 1. A frequency band will be
compressed its the signal level exceeds the threshold.

OctiMax 5-band
Compressor omx.5band~

240

mbagc_b2_threshold The word mbagc_b2_threshold, followed by a number, sets the compression
threshold level (in dB below full scale) for band 2. A frequency band will be
compressed its the signal level exceeds the threshold.

mbagc_b3_threshold The word mbagc_b3_threshold, followed by a number, sets the compression
threshold level (in dB below full scale) for band 3. A frequency band will be
compressed its the signal level exceeds the threshold.

mbagc_b4_threshold The word mbagc_b4_threshold, followed by a number, sets the compression
threshold level (in dB below full scale) for band 4. A frequency band will be
compressed its the signal level exceeds the threshold.

mbagc_b5_threshold The word mbagc_b5_threshold, followed by a number, sets the compression
threshold level (in dB below full scale) for band 5. A frequency band will be
compressed its the signal level exceeds the threshold.

mbagc_b1_atk The word mbagc_b1_atk, followed by a number, sets the attack rate for band
1. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

mbagc_b2_atk The word mbagc_b2_atk, followed by a number, sets the attack rate for band
2. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

mbagc_b3_atk The word mbagc_b3_atk, followed by a number, sets the attack rate for band
3. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

mbagc_b4_atk The word mbagc_b4_atk, followed by a number, sets the attack rate for band
4. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

mbagc_b5_atk The word mbagc_b5_atk, followed by a number, sets the attack rate for band
5. The attack rate determines how quickly the compressor applies gain
reduction. The value range is 0-150 on a logarithmic scale, with larger
values indicating faster attack.

OctiMax 5-band
Compressor omx.5band~

241

mbagc_b1_rel The word mbagc_b1_rel, followed by a number, sets the release rate for band
1. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b2_rel The word mbagc_b2_rel, followed by a number, sets the release rate for band
2. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b3_rel The word mbagc_b3_rel, followed by a number, sets the release rate for band
3. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b4_rel The word mbagc_b4_rel, followed by a number, sets the release rate for band
4. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b5_rel The word mbagc_b5_rel, followed by a number, sets the release rate for band
5. The release rate determines how quickly the compressor returns to unity
gain. The value range is 0-150 on a logarithmic scale, with larger values
indicating faster release.

mbagc_b1_drv The word mbagc_b1_drv, followed by a number, sets the gain in dB applied
to band 1 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

mbagc_b2_drv The word mbagc_b2_drv, followed by a number, sets the gain in dB applied
to band 2 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

mbagc_b3_drv The word mbagc_b3_drv, followed by a number, sets the gain in dB applied
to band 3 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

mbagc_b4_drv The word mbagc_b4_drv, followed by a number, sets the gain in dB applied
to band 4 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

OctiMax 5-band
Compressor omx.5band~

242

mbagc_b5_drv The word mbagc_b5_drv, followed by a number, sets the gain in dB applied
to band 5 before compression. Increasing the drive for a particular band
applies more compression to those frequencies.

outmix1 The word outmix1, followed by a number, sets the gain in dB applied to
band 1 after compression.

outmix2 The word outmix2, followed by a number, sets the gain in dB applied to
band 2 after compression.

outmix3 The word outmix3, followed by a number, sets the gain in dB applied to
band 3 after compression.

outmix4 The word outmix4, followed by a number, sets the gain in dB applied to
band 4 after compression.

outmix5 The word outmix5, followed by a number, sets the gain in dB applied to
band 5 after compression.

mbagc_progressive The word mbagc_progressive, followed by a 1 or 0, enables or disables the
Progressive Release mode, which causes the multi-band compressor to
release faster during heavy gain reduction.

multiband_limiters The word multiband_limiters, followed by a 1 or 0, enables or disables the peak
limiting function, which limits the signal level of each frequency band
independently, so it does not exceed the threshold set for that band.

mblim_b1_threshold The word mblim_b1_threshold, followed by a number, sets the threshold signal
level in dB for the peak limiter of band 1.

mblim_b2_threshold The word mblim_b2_threshold, followed by a number, sets the threshold signal
level in dB for the peak limiter of band 2.

mblim_b3_threshold The word mblim_b3_threshold, followed by a number, sets the threshold signal
level in dB for the peak limiter of band 3.

mblim_b4_threshold The word mblim_b4_threshold, followed by a number, sets the threshold signal
level in dB for the peak limiter of band 4.

mblim_b5_threshold The word mblim_b5_threshold, followed by a number, sets the threshold signal
level in dB for the peak limiter of band 5.

OctiMax 5-band
Compressor omx.5band~

243

lim_drive The word lim_drive, followed by a number, sets the overall gain in dB before
peak limiting is applied.

lim_smoothrelease The word lim_smoothrelease, followed by a number, sets the limiter response
mode as follows: 0 = punchy, 1 = smooth. Punchy response yields
extremely short attack and release times, useful for transparent limiting, or
to create loudness. However, if over-used, intermodulation distortion may
result. Smooth release uses longer attack and release times. The result is still
a fast look-ahead limiter, but with less intermodulation distortion and less
punch.

bassenhancement_mixlevel The word bassenhancement_mixlevel, followed by a number, sets the amount of
low-frequency enhancement added into the audio signal before output.

ng_enabled_maxch The word ng_enabled_maxch, followed by a 1 or 0, enables or disables noise
gating for the multi-band compressor. The noise gating itself has multiple
bands, separate from the compressor, allowing independent control via the
ngthresh messages below.

ngthresh1 The word ngthresh1, followed by a number that specifies a threshold level
(expressed as dB below full scale), sets the threshold level at which the noise
gate for band 1 will be engaged.

ngthresh2 The word ngthresh2, followed by a number that specifies a threshold level
(expressed as dB below full scale), sets the threshold level at which the noise
gate for band 2 will be engaged.

ngthresh3 The word ngthresh3, followed by a number that specifies a threshold level
(expressed as dB below full scale), sets the threshold level at which the noise
gate for band 3 will be engaged.

ngthresh4 The word ngthresh4, followed by a number that specifies a threshold level
(expressed as dB below full scale), sets the threshold level at which the noise
gate for band 4 will be engaged.

meters The word meters, followed by a 1 or 0, turns the metering output on
or off. When metering is on, a list of values will be sent from the
rightmost outlet at a rate specified by the meterRate message. These values
describe the current state of various internal levels of the compressor, and
can be used to drive GUI objects to provide visual feedback.

OctiMax 5-band
Compressor omx.5band~

244

meterRate The word meterRate, followed by a number, specifies the interval (in
milliseconds) at which the meter data described above will be sent.

saveSettings: The word saveSettings causes all parameter values to be sent out the third
outlet.

Arguments

None.

Output

signal Out leftmost two outlets: the input signals (if present), with dynamics
processing applied.

list Out third outlet: parameter values in response to saveSettings messages.

Out fourth outlet: meter data. When metering is turned on, lists of values
will be output that describe various internal levels. See the description of
the meters message, above.

See Also

omx.4band~ OctiMax 4-band Compressor
omx.comp~ OctiMax Compressor
oms.peaklim~ OctiMax Peak Limiter

OctiMax
Compressor omx.comp~

245

omx.comp~ is a fully-featured signal compressor with limiting, gating, sidechain, and dual-band
options.

Inputs

signal Audio input, the signal or pair of signals to be compressed.

ngEnabled The word ngEnabled, followed by a 1 or 0, turns the noise gate on or off. A
noise gate is effective for reducing background hiss when no other signal is
present. Here, it's implemented as a downward expander with a ratio of
2:1.

ngThreshold The word ngThreshold, followed by a number, sets the threshold level (in dB
below full scale) at which the noise gate will be engaged.

gatingLevel The word gatingLevel, followed by a number, sets the release gate threshold
(in dB below full scale). When the signal is below this threshold, the release
time of the compressor will be slowed by a factor of 3. See freezeLevel, below.

freezeLevel The word freezeLevel, followed by a number, sets the freeze threshold (in dB
below full scale). When the signal is below this threshold, the compressor
release action will be suppressed, and the gain will remain constant. In
normal operation, release action takes place when the signal is below the
compression threshold, increasing the gain until the signal returns to its
full-scale, uncompressed level. If there is no usable signal present, this can
have the effect of simply amplifying the noise floor. Release gate and
freeze can suppress gain recovery to avoid this condition.

agcThreshold The word agcThreshold, followed by a number, sets the compressor threshold
(in dB below full scale). This is the main compression threshold. Any signal
above the threshold will be reduced, and any signal below the threshold will
be amplified, according to the range and ratio parameters.

ratio The word ratio, followed by a number, sets the numerator of the compressor
gain reduction ratio, from 1:1 to Infinite:1.

range The word range, followed by a number, sets the maximum amount of gain
amplification allowed in dB. This limits the gain that is applied when the
signal is below the compression threshold. Note that this limiting takes
place before the ratio is applied. For example,: If range is set to 24 dB, and

OctiMax
Compressor omx.comp~

246

the ratio is 2:1, the most gain amplification you can get (after the ratio is
applied) is in fact 12 dB.

attack The word attack, followed by a number, sets the rate at which the
compressor is engaged when the signal level exceeds the agcThreshold. The
value range is 0-150 on a logarithmic scale, with larger values indicating
faster attack.

release The word release, followed by a number, sets the rate at which the
compressor releases its gain adjustment when the signal level no longer
exceeds the agcThreshold. The value range is 0-150 on a logarithmic scale,
with larger values indicating faster release. This rate can be modified by the
release gate and freeze thresholds.

dualBandEnabled The word dualBandEnabled, followed by a 1 or 0, turns dual band mode on or
off. In dual band, a crossover filter around 200hz splits the audio into two
bands, which are compressed separately. This can reduce bass pumping and
other artifacts of wide-band compression.

sidechainFilterEnabled The word sidechainFilterEnabled, followed by a 1 or 0, enables or disables an
attenuation filter in the upper midrange that makes the compressor less
sensitive to vocal signals, and generally produces a more gentle response.
This filter is only applied internally, to the control signal. Note that it may
cause more output overshoots, where the signal output level exceeds 0dB.

delay The word delay, followed by a number, sets the sidechain delay time (in
milliseconds)., This emulates the attack characteristics of vintage "opto"
compressors, and similar effects. The delay is applied to the control signal
only, and hence may result in large peaks at transients.

ProgressiveRelease The word ProgressiveRelease, followed by a 1 or 0, enables or disables the
Progressive Release mode, which causes the compressor to release faster
during heavy gain reduction. This means that the audio will be sound more
compressed when the input signal is louder. This can be used to create an
illusion of dynamics. It is especially useful with the ratio set to Infinite:1,
which could sound over-compressed without this option.

smoothGain The word smoothGain, followed by a 1 or 0, enables or disables gain
smoothing. This applies a low-pass filter to the control signal, and is useful
both to prevent artifacts (gain fluttering) from high attack/release rates,
and to intentionally make the compressor sluggish, adding extra "snap" to
transients.

OctiMax
Compressor omx.comp~

247

channelCoupling The word channelCoupling, followed by a number, sets the gain control source
as follows: 0 = stereo, 1 = left, 2 = right. In stereo mode, the gain control
signal is derived from whichever channel is loudest, unlike in left or right
mode where the gain control signal will only be derived from the selected
channel. This can be used for "keying" or "ducking" effects, where the
energy of one sound modulates the level of another.

limMode The word limMode, followed by a number, sets the limiter response mode as
follows: 0 = punchy, 1 = smooth. Punchy response yields extremely short
attack and release times, useful for transparent limiting, or to create
loudness. However, if over-used, intermodulation distortion may result.
Smooth response uses longer attack and release times. The result is still a
fast look-ahead limiter, but with less intermodulation distortion and less
punch.

meters The word meters, followed by a 1 or 0, turns the metering output on or off.
When metering is on, a list of values will be sent from the rightmost outlet
at a rate specified by the meterRate message. These values describe the current
state of various internal gain levels of the compressor, and can be used to
drive GUI objects to provide visual feedback. omx.comp~ sends a list of six
integers, describing compressor gain (left, right), noise gate gain
(left,right), and limiter gain (left, right).

meterRate The word meterRate, followed by a number, specifies the interval (in
milliseconds) at which the meter data described above will be sent.

Arguments

None.

Output

signal Out leftmost two outlets: the input signals (if present), with dynamics
processing applied.

list Out right outlet: when metering is turned on (via the meters message), a list
will be output describing various internal levels. See meters, above.

See Also

omx.4band~ OctiMax 4-band Compressor
omx.5band ~ OctiMax 5-band Compressor

OctiMax
Compressor omx.comp~

248

oms.peaklim~ OctiMax Peak Limiter

OctiMax
Peak Limiter omx.peaklim~

249

Inputs

signal Audio input, the signal or pair of signals to be peak-limited.

threshold The word threshold, followed by a number, sets the limiter threshold (in dB below
full scale). When the input signal level exceeds this threshold, it will be attenuated
as necessary to keep the level below the threshold.

ingain The word ingain, followed by a number, sets the gain in dB applied to the signal
before limiting.

outgain The word outgain, followed by a number, sets the gain in dB applied to the signal
after limiting.

mode The word mode, followed by a number, sets the limiter response mode as follows:

0 = punchy, 1 = smooth. Punchy response yields extremely short attack and
release times, useful for transparent limiting, or to create loudness. However, if
over-used, intermodulation distortion may result. Smooth response uses longer
attack and release times. The result is still a fast look-ahead limiter, but with less
intermodulation distortion and less punch.

meters The word meters, followed by a 1 or 0, turns the metering output on or off. When
metering is on, a list of two values will be sent from the rightmost outlet at a rate
specified by the meterRate message. These values describe the gain reduction in dB
currently applied to the two input signals.

meterRate The word meterRate, followed by a number, specifies the interval (in milliseconds) at
which the meter data described above will be sent.

Arguments

None.

Output

signal Out leftmost two outlets: the input signals (if present), with dynamics processing
applied.

list Out third outlet: parameter values in response to saveSettings message.

OctiMax
Peak Limiter omx.peaklim~

250

Out fourth outlet: meter data. When metering is turned on, lists of values will be
output that describe various internal levels. See the description of the meters
message, above.

See Also

omx.4band~ OctiMax 4-band Compressor
omx.5band ~ OctiMax 5-band Compressor
omx.comp~ OctiMax Compressor

Single-pole
lowpass filter onepole~

251

The onepole~ implements the simple filter equation
output = previous input + cf * (input - previous input)

where cf represents the cutoff frequency of the filter expressed in radians. The values for cf
lie in the range –1.0-0. This produces a single-pole lowpass filter with a 6dB/octave
attenuation, which can be useful to gently roll off harsh high end (e.g., the digital artifacts
of downsampling). onepole~ is equivalent to a biquad~ object with the coefficients,

[a0 = 1 + cf, a1 = 0, a2 = 0, b1 = cf, b2 = 0]

If you substitute these values into the biquad~ equation, you are left with the onepole~
object’s algorithm. However, onepole~ will execute much faster, since biquad~ will still
compute the unused portion of its equation.

Input

signal In left inlet: Signal to be filtered.

In right inlet: A signal can be used to set the frequency for the filter, with
the same effect as a float. If a signal is connected to this inlet, its value is
sampled once every signal vector.

float In right inlet: Sets the frequency for the filter (if no signal is connected).
By default, frequency is expressed in Hz, where the allowable range is from
0 to one fourth of the current sampling rate. For convenience, onepole~ has
two additional input modes that use the more conventional input range, 0
- 1 (see the linear and radians messages).

clear In either inlet: Clears the internal state of onepole~. Since onepole~ does
not have the inherent instability of other filter types, this should never be
necessary.

Hz In either inlet: Sets the frequency input mode to Hz (the default).

linear In either inlet: Sets the frequency input mode to linear (0 - 1). Linear
mode is simply a scaled version of the standard Hz mode, except that
values in the 0-1 range traverses the full frequency range.

radians In either inlet: Sets the frequency input mode to radians (0 - 1). Radians
mode lets you set the center frequency (cf) of the equation directly—while

Single-pole
lowpass filter onepole~

252

the input has the same range (0-1), the output has a curved frequency
response that is closer to the exponential pitch scale of the human ear.

Arguments

float Optional. Sets the center frequency for the filter, as described above.

Hz Optional. Sets the frequency input mode to Hz (the default mode—hence
this is the same as providing no mode argument).

linear Optional. Sets the frequency input mode to linear (0 - 1).

radians Optional. Sets the frequency input mode to radians (0 - 1).

Output

signal The filtered signal.

Examples

onepole~ provides efficient filtering for a simple sample player

See Also

biquad~ Two-pole, two-zero filter
reson~ Resonant bandpass filter

Non-interpolating
oscillator bank oscbank~

253

Input

signal or float In left inlet: Sets the frequency of the oscillator whose index is currently
referenced to the current floating-point value of the signal. The default
value is 0.

In 2nd inlet: Sets the magnitude (amplitude) of the oscillator whose index
is currently referenced.

In 3rd inlet: If frame sync is enabled using the framesync 1 message, a signal
in the range 0-1.0 sets the phase of the oscillator currently being
referenced.

In 4th inlet: Sets the index of the oscillator currently being referenced.

float In 3rd inlet: A float in the range 0-1.0 sets the phase of the oscillator
currently being referenced.

clear The word clear sets the frequency of all oscillators to zero and zeros all
amplitudes.

copybuf In left inlet: The word copybuf, followed by a symbol that specifies a buffer,
copies samples from the buffer into the oscbank~ object’s internal
wavetable. The number of samples is set using the tabpoints message. An
optional second integer argument specifies the position in the buffer at
which samples are loaded (offset).

framesync The word framesync, followed by a non-zero number, enables frame
synchronous operation. When frame synchronous operation is enabled, a
given index's values will only change or begin their interpolated ramps to
the next value when the index input signal is 0 (or once per n sample
frame). Otherwise, a given index's values will change or begin their
interpolated ramps to the next value when the index input signal is equal
to that index. The default is off.

freqsmooth The word freqsmooth, followed by an int, sets the number of samples across
which frequency smoothing is done. The default is 1 (no smoothing).

magsmooth The word magsmooth, followed by an int, sets the number of samples across
which magnitude (amplitude) smoothing is done on a oscillator. The
default is 0 (no amplitude smoothing).

Non-interpolating
oscillator bank oscbank~

254

set The word set, followed by pairs of floating-point values, sets the frequency
and amplitude of an oscillator in the oscillator bank. A list of n pairs will
set the first n oscillators in the oscbank~ object and zero the amplitude of all
others.

silence The word silence zeros the amplitude of all the oscillators.

size The word size, followed by a number, sets the number of oscillators. The
default is 64.

tabpoints The word tabpoints, followed by a number, sets the number of wavetable
points (samples) in the oscbank~ object’s internal wavetable. The default is
4096. The number of wavetable points should be a power or two between
22 and 216. Any other value will be rounded to the nearest power of two.

Arguments

int Optional. The number of oscillators.

int Optional. The number of samples across which frequency smoothing is
done.

int Optional. The number of samples across which amplitude smoothing is
done.

int Optional. The size, in samples, of the sinewave lookup table used by the
oscbank~ object. The default is 4096. Since oscbank~ uses uninterpolated
oscillators, you can choose to use a sinetable of larger size at the expense of
CPU.

Note: There is only one wavetable for all oscillators in a given oscbank~
object,

Output

signal A waveform consisting of the sum of the specified frequencies and
amplitudes.

Non-interpolating
oscillator bank oscbank~

255

Examples

oscbank~ creates a bank of oscillators that you can control with one object

See Also

ioscbank~ Interpolating oscillator bank

Message output for a patcher
loaded by poly~ or pfft~ out

256

Input

message Each out object in a patcher loaded by a poly~ or pfft~ object appears as an
outlet at the bottom of the poly~ or pfft~ object. Messages received in the
out object in the loaded patcher will be sent out the corresponding outlet of
the poly~ or pfft~ object. The message outputs are a mix of the outputs of
all instances of the patcher’s outputs.

Output

None.

Arguments

int Obligatory. Each out object is identified by a unique index number which
specifies which message outlet in a poly~ or pfft~ object it corresponds to.
The first outlet is 1.

Output

(patcher) Any messages received by an out object in a loaded patcher appear at the
signal outlet of the poly~ or pfft~ object which corresponds to the number
argument of the out object. The signal outputs in a poly~ or pfft~ object are
a mix of the outputs of all instances of the patcher’s outputs which
correspond to that number.

Message output for a patcher
loaded by poly~ or pfft~ out

257

Examples

Message outlets of the poly~ object correspond to the out objects inside the loaded patcher

See Also

in Message input for a patcher loaded by poly~ or pfft
in~ Signal input for a patcher loaded by poly~
out~ Signal output for a patcher loaded by poly~
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
Tutorial 21 MIDI control: Using the poly~ object

Signal output for a patcher
loaded by poly~ or pfft~ out~

258

Input

signal Each out~ object in a patcher loaded by the poly~ object appear as an outlet
at the bottom of the poly~ object. Signals received by the out~ object in the
loaded patcher will be sent out the corresponding outlet of the poly~ object.
The message outputs are a mix of the outputs of all instances of the
patcher’s outputs.

Arguments

int Obligatory. Each out~ object is identified by a unique index number which
specifies which outlet in a poly~ object it corresponds to. The first outlet is
1.

Output

(patcher) Any signals received by an out~ object in a loaded patcher appear at the
signal outlet of the poly~ object which corresponds to the number
argument of the out~ object. The signal outputs in a poly~ object are a mix
of the outputs of all instances of the patcher’s outputs which correspond to
that number.

Examples

Signal outlets of the poly~ object correspond to the out~ objects inside the loaded patcher

See Also

in Message input for a patcher loaded by poly~ or pfft
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~ or pfft~

Signal output for a patcher
loaded by poly~ or pfft~ out~

259

poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
Tutorial 21 MIDI control: Using the poly~ object

Soft-clipping
signal distortion overdrive~

260

The overdrive~ object uses a waveshaping function to distort audio signals. It amplifies
signals, limiting the maximum value of the signal to ±1. Values outside of this range are
removed using “soft clipping” somewhat like that of an overdriven tube-based circuit.

Input

signal In left inlet: the signal to be distorted.

float In right inlet: The overdrive~ object accepts a floating-point “drive factor”.
The drive factor should usually be in the range 1.0-10.0. Using a factor of
1.0 creates a linear response without distortion, and higher values increase
the distortion. Values less than 1, including negative values, produce very
heavily distorted signals. Use with caution—this behavior was originally
considered a bug until friends of the object's creator insisted that it should
be considered a feature and left intact.)

int Converted to float.

Arguments

float Optional. A single number can be provided to set the drive factor. If no
argument is provided, the drive factor is set to 1.0.

int Converted to float.

Output

signal The distorted signal.

Examples

Waveshape a signal similar to an overdriven amplifier

Soft-clipping
signal distortion overdrive~

261

See Also

kink~ Distort a sawtooth waveform
lookup~ Transfer function lookup tabl

Eliminate noise
in a muted subpatcher pass~

262

Input

signal Use a pass~ above any outlet object that will handle a signal. When the
audio in the subpatch is enabled, the pass~ object will pass its input to its
output. However, when the audio in the subpatch is disabled using mute~
or the enable 0 message to pcontrol, pass~ will send a zero signal out its outlet.

Arguments

None.

Output

signal When the audio in a subpatch containing pass~ is enabled, the output is
the same as the input. When the audio is disabled using mute~ or the enable
0 message to pcontrol, the output is a zero signal.

Examples

pass~ ensures that a muted signal is fully silenced

See Also

mute~ Disable signal processing in a subpatch
Tutorial 5 Fundamentals: Turning signals on & off

Set the maximum
amplitude of a signal peakamp~

263

Input

signal In left inlet: Signal to be evaluated for its peak amplitude.

bang In left inlet: Sends out a report of the greatest (absolute value) signal
amplitude received since the previous report.

int In right inlet: Sets the interval in milliseconds for an internal clock that
triggers the automatic output of peak amplitude values from the input
signal. If the interval is 0, the clock stops. If it is a positive integer, the
interval changes the rate of data output. Time intervals shorter than the
duration of one signal vector may be specified, but the peak amplitude will
be checked only once per vector.

float In right inlet: Same as int.

Arguments

int Optional. Sets the internal clock interval, in milliseconds. If it is 0, the
internal clock is not used, so peakamp~ will only output data when it
receives a bang message. If it is non-zero, peakamp~ will repeatedly send
out the peak amplitude received in that interval of time. By default, the
interval is 0.

Output

float When peakamp~ receives a bang or its internal clock is on, the absolute value
of the peak signal value from the input signal is sent out its outlet.

Examples

Report the maximum of a signal's absolute value

Set the maximum
amplitude of a signal peakamp~

264

See Also

meter~ Visual peak level indicator
snapshot~ Convert signal values to numbers

Read and write
sample values peek~

265

The peek~ object will function even when the audio is not turned on. You can use peek~
to treat buffer~ as a floating-point version of the Max table object in non-signal
applications.

Input

int In left inlet: A sample index into the associated buffer~ object’s sample
memory. The value stored in the buffer~ at that index is sent out the peek~
object’s outlet. However, if a value has just been received in the middle
inlet, peek~ stores that value in the buffer~ at the specified sample index,
rather than sending out a number. If the number received in the left inlet
specifies a sample index that does not exist in the buffer~ object’s currently
allocated memory, nothing happens.

In middle inlet: Converted to float.

In right inlet: A channel (from 1 to 4) specifying the channel of a multi-
channel buffer~ to be used for subsequent reading or writing operations.

float In left inlet: Converted to int.

In middle inlet: A sample value to be stored in the associated buffer~. The
next sample index received in the left inlet causes the sample value to be
stored at the index.

In right inlet: Converted to int.

clip In left inlet: The word clip, followed by a non-zero number, enables –1.0-
1.0 clipping. Clipping is enabled by default. Clipping can be disabled with
the message clip 0.

list In left inlet: The second number is stored in the associated buffer~ at the
sample index specified by the first number. If a third number is present in
the list, it sets the channel of a multi-channel buffer~ in which the value will
be stored. Otherwise, the most recently set channel is used.

Note that for int, float, and list, if the message refers to a sample index that
does not exist in the buffer~ object’s sample memory, nothing happens.
You can ensure that memory is allocated to the buffer~ by reading an
existing file into it, by typing in a duration argument, or by setting its
memory allocation with the size message.

Read and write
sample values peek~

266

set In left inlet: The word set, followed by the name of a buffer~ object,
associates peek~ with that newly named buffer~ object.

(mouse) Double-clicking on peek~ opens an editing window where you can view
the contents of its associated buffer~ object.

Arguments

symbol Obligatory. Names the buffer~ object whose sample memory is used by
peek~ for reading and writing.

int Optional. Following the buffer~ name, you can type in a number to specify
the channel in a multi-channel buffer~ to use for subsequent reading or
writing operations. The default is 1.

int Optional. An optional third argument after buffer name and channel can
be used to enable clipping. If the third argument is a one, then –1.0-1.0
clipping is enabled. You can also change this setting using the clip
message.

Output

float The sample value in a buffer~, located at the table index specified by a float
or int received in the left inlet, is sent out the peek~ object’s outlet.

Examples

Peek at samples in a buffer~, and/or set the value of the samples

See Also

buffer~ Store audio samples
buffir~ Buffer-based FIR filter
poke~ Write sample values by index

Read and write
sample values peek~

267

table Store and graphically edit an array of numbers

Spectral processing
manager for patchers pfft~

268

The pfft~ object is designed to simplify spectral audio processing using the Fast Fourier
Transform (FFT). In addition to performing the FFT and the Inverse Fast Fourier
Transform (IFFT), pfft~ (with the help of its companion fftin~ and fftout~ objects)
manages the necessary signal windowing, overlapping and adding needed to create a real-
time Short Term Fourier Transform (STFT) analysis/resynthesis system.

Input

signal The number of inlets on the pfft~ object is determined by the number of
fftin~ and/or in objects in the enclosed subpatch. Patchers loaded into a
pfft~ object can only be given signal inlets by fftin~ objects within the
patch. See fftin~ and in for details.

bang Patchers loaded into a pfft~ object can only accept bang messages by in
objects within the patch. The number of inputs is determined by the in
objects in the enclosed subpatch. See in for details.

mute The word mute, followed by a 1 or 0, will mute or unmute the pfft~, turning
off signal processing within the enclosed subpatch.

open The word open will open the subpatch loaded into the pfft~ object.

wclose Closes the enclosed subpatch if it is open.

Arguments

symbol Obligatory. The first argument must be the name of a subpatch which will
be loaded into the pfft~ and assigned its own signal-processing chain. The
signal processing chain connections for input and output are made using
fftin~ and fftout~ objects in the subpatcher.

int Optional. Specifies the FFT size, in samples, of the overlapped windows
which are transformed to and from the spectral domain by the FFT/IFFT.
The window size must be a power of 2, and defaults to 512. (Note: The size
of the spectral “frames” processed by the pfft~ object's subpatch will be half
this size, as the 2nd half of the spectrum is a mirror of the first, and thus
redundant.)

int Optional. The third argument determines the overlap factor for FFT
analysis and resynthesis windows. The hop size (number of samples
between each successive FFT window) of Fast Fourier transforms
performed is equal to the size of the Fast Fourier transform divided by the

Spectral processing
manager for patchers pfft~

269

overlap factor (e.g. if the frame size is 512 and the overlap is set to 2 then
the hop size is 256 samples). The value must be a power of 2 and defaults to
2.

int Optional. The fourth argument specifies the start onset in samples for the
Fast Fourier transform. It must be a multiple of the current signal vector
size and defaults to 0.

int Optional. A non-zero fifth argument may be used to specify “full-
spectrum mode”. In this mode, the pfft~ object will internally compute a
complex FFT and process full DC to SR mirrored spectra (instead of simply
eliminating the redundant half of the spectrum). This takes up extra
computing power, but may be potentially useful in some of the more
esoteric spectral processing applications.

Output

signal The output is the result of the FFT-based signal processing subpatch. As
with the fft~ and ifft~ objects, pfft~ introduces a slight delay from input to
output (although it is less than half the delay than with an fft~/ifft~
combination). The I/ O delay is equal to the window size minus the hop
size (e.g., for a 1024-sample FFT window with an overlap factor of 4, the
hop size is equal to 256, and the overall delay from input to output is 768
samples). The number of outlets is determined by the number of fftout~
and/or out objects in the loaded subpatcher. Patchers loaded into a pfft~
object can be given outlets by fftout~ or out objects within the patch. See
fftout~ and out for details.

message Any messages received by an out object in a loaded patcher appear at the
message outlet of the pfft~ object which corresponds to the number
argument of the out object. The message outlets of a pfft~ object appear to
the right of the rightmost signal outlet.

Spectral processing
manager for patchers pfft~

270

Examples

 pfft~ loads subpatchers specially designed for frequency domain processing

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
in� Message input for a patcher loaded by poly~ or pfft~
out� Message output for a patcher loaded by poly~ or pfft~
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT
Tutorial 26 Frequency Domain Signal Processing with pfft~

Phase shifter phaseshift~

271

Input

signal In left inlet: the signal to be shifted in phase.

In middle inlet: Sets the frequency at which signals will be shifted by 180
degrees. Signals below this frequency will be shifted less; signals above will
be shifted more, up to 360 degrees.

In right inlet: Sets the “Q” factor, or steepness with which the object's
phase shift changes from zero to 360 degrees. Useful values for Q are
generally in the range 1. to 10.

int or float An int or float can be sent in the middle or right inlets to change the
frequency at which signals will be shifted by 180 degrees or the “Q” factor,
respectively (see inlet descriptions above). If a signal is connected to one of
the inlets, a number received in that inlet is ignored.

Arguments

float Optional. If one argument is provided, it sets the phaseshift~ object's
frequency parameter. If two arguments are provided, the first sets the
frequency parameter and the second sets the Q factor.

Output

signal The input signal, its the frequency components or harmonics shifted in
phase from zero to 360 degrees, dependent upon their frequency and the
values of the object's frequency and Q parameters.

Phase shifter phaseshift~

272

Examples

Simulate an analog phase shifter using phaseshift~ and an LFO

See Also

allpass~ Allpass filter
comb~ Comb filter

Wrap a signal
between π and -π phasewrap~

273

Input

signal The signal to be wrapped. If the input signal value exceeds ! (3.14159), the
output signal value is “wrapped” to a range whose lower bound is –!
(–3.14159) — thus, a signal of increasing value outputs sawtooth
waveform with –! and ! as lower and upper values.

Arguments

None.

Output

signal The wrapped input signal value.

Examples

Use phasewrap~ to make sure that signals stay within normal radial values

See Also

cartopol~ Signal Cartesian to Polar coordinate conversion
pfft~ Spectral-processing manager for Patchers
pong~ Variable range signal folding

Sawtooth wave generator phasor~

274

Input

signal In left inlet: Sets the frequency of the sawtooth waveform.

int or float In left inlet: Sets the frequency of the sawtooth waveform. If a signal is
connected to this inlet, int and float messages are ignored.

In right inlet: Sets the phase of the waveform (from 0 to 1). The signal
output continues from this value.

Arguments

int or float Optional. Sets the initial frequency of the waveform. If a signal is
connected to the left inlet, the argument is ignored.

Output

signal Sawtooth waveform that increases from 0 to 1 repeatedly at the specified
frequency.

Examples

A repeating ramp is useful both at audio and at sub-audio frequencies

See Also

2d.wave~ Two-dimensional wavetable
cycle~ Table lookup oscillator
line~ Linear ramp generator
sync~ Synchronize MSP with an external source
techno~ Signal-driven sequencer
trapezoid~ Trapezoidal wavetable
triangle~ Triangle/ramp wavetable
wave~ Variable-size wavetable

Sawtooth wave generator phasor~

275

Tutorial 3 Analysis: Wavetable oscillator

Pink noise generator pink~

276

Input

None.

Arguments

None.

Output

signal The pink~ object generates a signal consisting of random value in the range
–1.0 - 1.0, with an even distribution of power per octave of frequency.
Noise with this power distribution is known as “pink noise”. “White
noise”, as generated by the object noise~, has an even distribution of power
over all frequencies. Perceptually, white noise sounds bright and harsh, and
pink noise sounds more even and “natural”.

Examples

pink~ generates random numbers such that the frequency content is equal power per
octave

See Also

noise~ White noise generator

Position-based
sample playback play~

277

Input

signal In left inlet: The position (in milliseconds) into the sample memory of a
buffer~ object from which to play. If the signal is increasing over time,
play~ will play the sample forward. If it is decreasing, play~ will play the
sample backward. If it remains the same, play~ outputs the same sample
repeatedly, which is equivalent to a DC offset of the sample value.

set The word set, followed by the name of a buffer~ object, uses that buffer~ for
playback.

Arguments

symbol Obligatory. Names the buffer~ object whose sample memory is used by
play~ for playback.

int Optional, after the name argument. Specifies the number of output
channels: 1, 2, or 4. The default number of channels is one. If the buffer~
being played has fewer channels than the number of play~ output channels,
the extra channels output a zero signal. If the buffer~ has more channels,
channels are mixed.

Output

signal Sample output read from a buffer~. If play~ has two or four output
channels, the left outlet’s signal contains the left channel of the sample,
and the other outlets’ signals contain the additional channels.

Position-based
sample playback play~

278

Examples

play~ is usually driven by a ramp signal from line~, but other signals create novel effects

See Also

2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
buffir~ Buffer-based FIR filter
groove~ Variable-rate looping sample playback
record~ Record sound into a buffer
Tutorial 13 Sampling: Recording and playback

Configure the behavior
of a plug-in plugconfig

279

The plugconfig object lets you configure your plug-in’s behavior using a script that will be
familiar to users of the env and menubar objects. The script can be accessed by double-
clicking on a plugconfig object. You should only have one plugconfig object per plug-in
patcher; if you have more than one, the object that loads last will be used by the runtime
plug-in environment. Since it’s not easy to determine which object that will be, just use
one.

When you double-click on plugconfig, you’ll see a short script already in place. These are
the default settings, which are in fact identical to those you’d get if your patch contained
no plugconfig object at all.

plugconfig is pretty much a read-only object when used within the runtime plug-in
environment. The environment reads the settings from the object’s script and is
configured accordingly. You can send the messages view and offset to the object to scroll
the patcher to a new location, but most plug-ins will allow the user to do this using the
View menu that appears above the plug-in interface.

Input

Use the capture and recall messages to build a set of interesting presets that
are embedded within your plug-in.

capture The word capture, followed by a program number (1-based) and optional
symbol, stores the current settings of all pp and plugmultiparam objects in
the patcher containing the plugconfig object as well as its subpatchers. The
settings are stored using a setprogram message added to the plugconfig object’s
script. The parameter numbers of the pp and plugmultiparam objects
determine the order of the values in the setprogram message. capture does
not work within the runtime plug-in environment.

offset The word offset, followed by numbers for the X and Y coordinates, scrolls
the patcher containing the plugconfig object to the specified coordinates.

read The word read, followed by an optional symbol, imports a file of effect
programs saved in Cubase format and loads as many as possible into the
plugconfig object for saving as setprogram messages. No checking is done to
verify that the file contains effect programs for a plug-in with the same
unique ID code as the one in the plugconfig object, nor is there any
checking to ensure that the number of plugconfig parameters match. If the
symbol is present, plugconfig looks for a file with that name. Otherwise, a

Configure the behavior
of a plug-in plugconfig

280

standard open file dialog is displayed, allowing you select an effect
program file.

recall The word recall, followed by a program number (1-based), sets all pp and
plugmultiparam objects to the values stored within a setprogram message in
the plugconfig object’s script. The parameter numbers of the pp and
plugmultiparam objects determine the values they are assigned from the
contents of the setprogram message.

view The word view, followed by a symbol that is the name of a view defined in
the plugconfig object’s script, scrolls the patcher containing the plugconfig
object to the coordinate offset assigned to the view.

Script Messages

Messages for View Configuration

A View is a particular configuration of the plug-in’s edit window. plugconfig
lets you control which views you’d like to see, and add views of the plug-in
patcher at various pixel offsets that you can select with the menu. These
might correspond to “pages” of controls you offer to the user.

addview Arguments: name, x offset, y offset

addview adds an additional Interface view to the plug-in’s View menu with a
specified x and y offset. This allows you to scroll the patcher to a different
location to expose a different part of the interface that might correspond
to a “page” of parameter controls. If you send the view message to
plugconfig with the name an added view as an argument, the patcher
window will scroll to the view’s x and y offset. This works in Max as well as
in the run-time plug-in environment, allowing you to test interface
configurations.

defaultview Arguments: name, x offset, y offset, 1/0 for initial view

defaultview renames the Interface item in the plug-in’s View menu to the
name argument, scrolling the patcher to the specified x and y offsets when
the view is made visible. If the third argument (optional) to defaultview is
non-zero, the view is made the initial view shown when the plug-in editing
window is opened. This will be true anyway if there is no Parameters view
(as specified by the useviews message).

Configure the behavior
of a plug-in plugconfig

281

dragscroll Arguments: allow (1), disallow (0)

This message is currently unimplemented.

meter Arguments: 1 (meter the input, default), 2 (meter the output), 3 (off)

The meter message sets the initial mode of the level meter at the top of the
plug-in edit window. There is currently no way to permanently disable the
meter, but it is disabled if there isn’t enough space to display it fully
because you’ve defined an edit window that is too narrow.

usedefault Arguments: none

If this message appears in a script, there is no plug-in edit window. Instead,
the parameter editing features of the host environment are used. By
default, usedefault is not present in a script, and the plug-in’s editing
window appears.

useviews Arguments: 1/0 for showing views, as discussed below

useviews determines which plug-in edit window views are presented to the
user. The views are specified in the following order: Parameters (the egg
sliders), Interface (a Max patcher-based interface), Messages (a transcript of
the Max window useful for plug-in development), and Plug-in Info (where
you can brag about your plug-in). If the edit window is visible, the Pluggo
Info view always appears.

For example, useviews 1 0 0 0 would place only the Parameters view in the
plug-in edit window’s View menu. The user would be unable to switch to
another view.

Messages for Window Configuration

autosize Arguments: none

autosize, which by default is enabled, sizes the plug-in edit window to be the
height necessary to display all of the parameters, and the width of the
parameter display.

setsize Arguments: width, height

setsize sets the plug-in edit window to be a specific size in pixels. If you use
the Parameters view, this size may be overridden if you’ve specified a

Configure the behavior
of a plug-in plugconfig

282

window too narrow to display the egg sliders properly. Note that you
should add approximately 30 pixels to the size of the patcher window in
order to account for the height of the View menu and level meter panel.

windowsize Arguments: none

windowsize sets the size of the plug-in edit window to the size of the patcher
window.

Messages for Program Information

initialpgm Arguments: program number

The initialpgm message specifies the program that should be loaded when the
plug-in is initially opened. The default is 0, which means no program will
be loaded; instead in this case, you would use loadbang objects to set the
initial values of plug-in parameters. This behavior, however, is not
consistent with the majority of plug-ins that get set to the values in
program 1 when they are loaded (since 1 is always the initial program,
unless the plug-in is being restored as part of a document for the host
application). Once you have a collection of settings that you like, consider
storing them in the first program inside plugconfig and adding an ini-
tialpgm 1 message. This has the added benefit of doing away with loadbang
objects used to initialize your parameters. Any other program number (up
to the number of programs in the plug-in specified by the numprograms
message) can also be loaded, but the current program number as shown in
the host sequencer’s window cannot be changed by the plug-in, so given
that all host sequencers are initially set to program 1, you’ll end up
confusing the user if you load another program number initially.

numprograms Arguments: number of programs

numprograms sets the number of stored programs for the plug-in. Programs
are collections of values (between 0 and 1) for each of the parameters
you’ve defined using pp and plugmultiparam objects. The default number of
programs is 64, the minimum is 1, and the maximum is 128. By default, all
programs are set to 0 for each parameter, but you can override this with the
setprogram message.

setprogram Arguments: number, name, start index offset, list of values...

Normally, you won’t be typing the setprogram message into a script yourself;
you’ll send capture messages to generate it automatically. You might end

Configure the behavior
of a plug-in plugconfig

283

up editing it though—for example, to change the program’s name—so it’s
useful to know a little about the message’s format. setprogram lets you
name a specific program and, optionally, set some initial values for it.
Program numbers (for the first argument) start at 1. The name is a symbol,
so if there are spaces in the name, it must be contained in double quotes.
The start index offset argument sets a number added to 1 that determines
the starting parameter number of the parameter values listed in the
message. After this argument, one or more parameter values follow. If you
don’t supply enough values to set all the defined parameters, the additional
ones are set to 0. You don’t need to set the values at all if you want them
to be 0. However, when you re-open the plugconfig script, the additional
zero values will have been added. The start index offset argument is used to
handle stored programs containing more than 256 parameters. 256 is the
maximum size of a Max message.

Messages for DSP Settings

accurate Arguments: none

The accurate message tells the runtime plug-in environment to run the Max
event (or control) scheduler at the same number-of-samples interval as the
signal vector size. At 32 samples this is slightly less than 1 ms but running
the scheduler this often can have some impact on the overall CPU
intensiveness of the plug-in.

By default, accurate mode is not enabled and the scheduler runs at the
same interval as the I/O vector size of the host environment, typically 512
or 1024 samples. The only thing accurate mode affects is parameter
updating to a plug-in, so for example if you have a control-rate “LFO” you
may want to use this mode. The use of accurate mode will also increase the
frequency of parameter updating from control-rate scheduled plugmod
processes.

latency Arguments: number of samples of latency inherent to plug-in

The latency message allows the runtime plug-in environment to tell the
plug-in host the number of samples of latency inherent to the plug-in
algorithm so the host can compensate.

preempt Arguments: 1/0 sets priority of control messages.

This message is currently ignored by the runtime plug-in environment.

Configure the behavior
of a plug-in plugconfig

284

oversampling Arguments: code number

This message is currently ignored by the runtime plug-in environment.

sigvs default Arguments: signal vector size

This message is currently ignored by the runtime plug-in environment. 32
is currently the only possible signal vector size.

Messages for Descriptive Information

When configuring the plug-in’s informational view, you choose between
using text with infotext, a picture with infopict, or not having an info view at
all with noinfo.

hintbg Arguments: red, green, and blue color components as 16-bit values

If you are offended by the yellow background color of the hint area, you
can change it to something else. As an example, a medium gray would be
specified with hintbg 40000 40000 40000, and a white background would
be specified with hintbg 65535 65535 65535.

hintfg Arguments: red, green, and blue color components as 16-bit values

When using the swirl mode for the hint area, the hintfg message specifies
the color of the dark part of the swirl. For best results, hintfg should be
darker than hintbg.

infopict Arguments: file name of a PICT file in the Max search path

infopict allows you to include a picture to display in the Plug-in Info view. If
you use infopict, you need to include the picture (manually) to your plug-
in’s collective script. The runtime plug-in environment will be able to find
the picture within the collective.

infotext Arguments: text as separate words and numbers

infotext allows you to describe the effect and have the text appear in the
Plug-in Info view. There is a limit of about 256 words. A special symbol
<P> produces a carriage return. Note that all commas and semicolons in
the text must be preceded by a backslash. If you do not do this, you could
wipe out the rest of your script when you save it.

nohintarea Arguments: none

Configure the behavior
of a plug-in plugconfig

285

If the nohintarea message appears in a script, the runtime plug-in
environment does not provide additional space for a hint area at the
bottom of the Parameters view. If however the number of egg sliders does
not completely fill the edit window because its size was defined using
windowsize or setsize, a hint area will be present.

noinfo Arguments: none

This is the default behavior for plug-in information. If neither text nor
picture has been provided as information about the effect, the Plug-in Info
item does not appear in the View menu, even if you've enabled it with the
useviews command above. If noinfo and either infopict or infotext appear
together in a script, noinfo “loses” and the info view is displayed.

nonrealtime Arguments: none

The nonrealtime message will cause the plug-in to be listed in the AudioSuite
menu in Pro Tools.

package Arguments: a four-character code that identifies a plug-in collection

The package message, followed by a four-character code, is used to define a
plug-in collection. This code corresponds to the Macintosh Application
Creator Code (see the Collectives chapter of the Max Topics manual for
more information on this topic). If your collection of plug-ins with a custom
package code is placed in a subfolder of the VST folder (as is done with the
pluggo, Mode, Hipno and UpMix plug-in collections) most host
applications will categorize them as a separate collection. The default four-
character ID is ????, which is assigned for generic files and applications.

swirl Arguments: none

The swirl message sets the hint area background to be drawn as a swirl
inspired by the pluggo packaging (which was itself inspired by the publicity
poster for the classic French film musical “Les Demoiselles de Rochefort”).
The default appearance of the hint area is the pain, non-swirl background.
To set the swirl colors, use hintfg and hintbg.

uniqueid Arguments: id1 id2 id3 (between 0 and 255)

You’ll find this message in your plugconfig script when you first open it. The
arguments will be three randomly generated numbers between 0 and 255,
something like three quarters of an IP address.

Configure the behavior
of a plug-in plugconfig

286

These numbers are used to build an ID code that will uniquely identify
your plug-in. The code is used to identify a plug-in as a pluggo-based
animal as well as to preserve plugmod connections between patchers.

You can either use the three randomly generated numbers or something
intentional. There are about 16 million possibilities. 0 0 0 is reserved and
cannot be used. 0 followed by two other numbers is reserved for use by
Cycling ’74 and its registered plug-in developers. You won’t need to
interact with this ID code, although you might want to know that part of it
will be used as the basis for a floating-point “patcher code” output by the
plugmod object. The floating-point value, however, will not in any way
resemble the ID you choose.

welcome Arguments: text as separate words and numbers

The text arguments to the welcome message are displayed at the bottom hint
area when the user opens the plug-in editing window for the first time and
looks at the Parameters view, as well as when the cursor is moved into the
top part of the window when the Parameters view is being used. If the
nohintarea message is present in the script, the lack of a hint area in the
Parameters view will cause the welcome message not to be displayed.

Arguments

None.

Output

None.

Examples

Send the capture message to plugconfig to create presets

Configure the behavior
of a plug-in plugconfig

287

See Also

plugmod Modify plug-in parameter values
Pluggo Tutorial P2 Enhancing the plug-in interface
Pluggo Tutorial P3 A plug-in with a Max interface

Define a plug-in’s
audio inputs plugin~

288

plugin~ and plugout~ define the signal inputs and outputs to a plug-in. You can use them
within Max as simple thru objects, feeding plugin~ a test signal and routing the output of
plugout~ to a dac~ object. When plugin~ and plugout~ are operating within the runtime
environment however, they act differently. plugin~ ignores its input and instead outputs
the plug-in’s signal inputs fed to it by the host mixer. plugout~ does not output any type
of signal out its outlets; instead it feeds its signal inputs to the plug-in’s audio outputs to
the host mixer.

Input

signal In left and right inlets: When used in Max/MSP, the plugin~ object echoes
its input to its output. When used in the runtime plug-in environment,
signals sent to its inputs are ignored, and instead the audio inputs to the
plug-in are copied to the plugin~ object’s outlets.

Arguments

None. plugin~ always has two inlets and two outlets.

Output

signal When used in Max/MSP, the signal output of the plugin~ object is simply
its signal input. When used in the runtime plug-in environment, the
signal output will be the left and right channels of the audio input to the
plug-in from the host. If the plug-in is inserted in a mono context, it’s
possible that only the left channel will contain the incoming audio signal
and the right channel will be 0. The exact nature of the audio input to the
plug-in is up to the host mixer.

Define a plug-in’s
audio inputs plugin~

289

Examples

See Also

plugout~ Define a plug-in’s audio outputs

Receive MIDI
from a plug-in host plugmidiin

290

plugmidiin delivers any MIDI information targeted to the plug-in. It functions analogously
to the Max midiin object, delivering raw MIDI as a sequential byte stream. You’ll want to
connect the midiparse object to its outlet. MIDI information is always delivered by
plugmidiin at high-priority (interrupt) level. You may have more than one plugmidiin object
in a patcher; each will output the same information.

Input

None.

Arguments

None.

Output

int MIDI message bytes in sequential order. For instance, a note-on message
on channel 1 for note number 60 with velocity of 64 would be output as
144 followed by 60 followed by 64.

Examples

MIDI message received from the host application are output by the plugmidiin object

Receive MIDI
from a plug-in host plugmidiin

291

See Also

midiparse Interpret raw MIDI data
plugmidiout Send MIDI to a plug-in host

Send MIDI
to a plug-in host plugmidiout

292

plugmidiout sends MIDI information to the host, where it is routed according to the host’s
current configuration. The plug-in has no control over the routing of its MIDI output.
plugmidiout is analogous to midiout; it expects raw MIDI bytes in sequential order. You
can use midiformat to transform numbers into MIDI messages appropriate for plugmidiout.

Input

int MIDI message bytes in sequential order. For instance, a note-on message
on channel 1 for note number 60 with velocity of 64 would be sent to
plugmidiout as 144 followed by 60 followed by 64.

Arguments

None.

Output

None.

Examples

See Also

midiformat Prepare data in the form of a MIDI message
plugmidiin Receive MIDI from a plug-in host

Modify plug-in
parameter values plugmod

293

plugmod allows a plug-in to modify the parameter values of another plug-in. It generates a
pop-up menu listing all the visible parameters of all currently loaded plug-ins. The output
of this menu is fed back to the input of the object to tell it what parameter should be
modified with the numeric input plugmod receives. Additional inlets and outlets interface
with pp objects to save the object’s connection to a particular plug-in and parameter in
effect presets. This allows plugmod to reconnect to its target plug-in and parameter when a
sequencer document is reloaded.

Input

anything In left inlet: A plug-in name followed by a parameter index sets the
parameter the plugmod object will modify with its numeric input. This plug-
in and parameter are referred to as the object’s target.

No Connection In left inlet: When the word No Connection is received, the plugmod object
breaks its connection (if any) with its current target and stops affecting the
target parameter. The No Connection symbol is always the first item in the
menu generated by the plugmod object’s left outlet when plug-ins are
inserted or deleted in the runtime environment.

int or float In left inlet: The value received, which is constrained between 0 and 1, is
assigned to the target plug-in and parameter.

In 2nd inlet: The value received is added to the base value of the parameter
before plugmod began to modify it.

In 3rd inlet: The value received is multiplied by the base value of the
parameter before plugmod began to modify it.

float In 4th inlet: The value is interpreted as a code to assign a new plug-in as a
target. The outlet of a pp object is normally connected to this inlet.

In right inlet: The value is interpreted as a code to assign a new parameter
as a target. The outlet of a pp object is normally connected to this inlet.

Arguments

None.

Modify plug-in
parameter values plugmod

294

Output

anything Out left outlet: Output from this outlet of the plugmod object occurs when a
new plug-in is either inserted or deleted. The messages update an attached
menu object with a new list of plug-ins and parameters that are potential
targets for this object to modify.

float Out 2nd outlet: The current plug-in code is output when the object’s target
changes via a message from the attached pop-up menu object sent to the
object’s left inlet, or when a new plug-in code is received in the 4th inlet.

Out right outlet: The current parameter code is output when the object’s
target changes via a message from the attached pop-up menu object sent to
the object’s left inlet, or when a new parameter code is received in the right
inlet.

Examples

See Also

menu Pop-up menu, to display and send commands
Pluggo Tutorial P5 A modulator plug-in

Generate parameter values
from programs plugmorph

295

plugmorph allows a plug-in to modify the parameter values of another plug-in by creating a
weighted average of two or more of its effect programs. Such an average is often known
as a “morph” since it can often (but not always) create a continuous perceptual space
between one effect program and another. plugmorph generates a pop-up menu listing all
currently loaded plug-ins. The output of this menu is fed back to the input of the object,
allowing the user to specify which plug-in should be modified according to the input
plugmorph receives. An additional inlet and outlet interface with a pp object saves the
object’s connection to a particular plug-in. This allows plugmorph to reconnect to its target
plug-in when a sequencer document is reloaded.

Input

anything In left inlet: A plug-in name sets what the plugmorph object will modify
with its input. This plug-in is referred to as the object’s target.

No Connection In left inlet: When the word No Connection is received, the plugmorph object
breaks its connection (if any) with its current target and will no longer
change a plug-in’s parameters. The No Connection symbol is always the first
item in the menu generated by the plugmorph object’s left outlet when
plug-ins are inserted or deleted in the runtime environment.

list In left inlet: Causes plugmorph to calculate new values for the connected
plug-in’s parameters. The format of the list is an effect program number
followed by a weighting fraction. A maximum of 128 program numbers
can be specified. If the fractions do not add up to 1, they are normalized to
do so. As an example, the list 1 0.5 2 0.5 would set the target plug-in’s
parameters to values that were a simple average of effect programs 1 and 2.
A list of 1 0.6 2 0.6 3 0.6 4 0.6 would perform a weighted averaging of the first
four effect programs where the parameter values of each program were
represented equally. In other words, each programs’s parameter value
contributes 25% to the morphed value. If the target plug-in’s current effect
program is among those being morphed, an attempt is made not to store
the parameter values so the user can perform more than one morph. The
generated parameter values can be stored later using the store message to
plugmorph. However, some multislider-based plug-ins defer parameter
changes in such a way that this storage prevention mechanism doesn’t
work, requiring that the user set the current effect program to a number
that isn’t involved in the morph.

morphfixed In left inlet: The word morphfixed, followed by a number, determines
whether parameters marked as fixed are included in the morph. If the

Generate parameter values
from programs plugmorph

296

number is 0, fixed parameters are not included and their values are left
unchanged. If the number not zero, fixed parameters are included. The
default behavior of plugmorph is to include fixed parameters.

morphhidden In left inlet: The word morphhidden, followed by a number, determines
whether parameters marked as hidden are included in the morph. If the
number is 0, hidden parameters are not included and their values are left
unchanged. If the number not zero, hidden parameters are included. The
default behavior of plugmorph is to include hidden parameters.

store In left inlet: The word store copies the current values of the target plug-in’s
parameters to its effect program.

float In right inlet: The value is interpreted as a code to assign a new plug-in as a
target. The outlet of a pp object is normally connected to this inlet.

Arguments

None.

Output

anything Out left outlet: Output from this outlet of the plugmorph object occurs
when a new plug-in is either inserted or deleted. The messages update an
attached menu object with a new list of plug-ins that are potential targets.

float Out 2nd outlet: When a new plug-in is selected as a target, plugmorph
outputs the number of effect programs it contains out this outlet.

Out right outlet: The current parameter code is output when the object’s
plug-in target changes via a message from the attached pop-up menu
object sent to the object’s left inlet, or when a new parameter code is
received in the right inlet.

Generate parameter values
from programs plugmorph

297

Examples

See Also

umenu Pop-up menu, to display and send commands

Define multiple
plug-in parameters plugmultiparam

298

The plugmultiparam object lets you define three or more parameters that are displayed and
changed by a single object. However, these parameters will be hidden from the Parameters
view in the plug-in window; they can only be changed by creating a Max user interface.
Primarily, plugmultiparam was designed to be used in conjunction with the multislider
object; it can also work with the plugstore object, or simply a set of cleverly organized pack
and unpack objects.

Input

int The value at the specified parameter index is sent out the object’s right
outlet.

list Interpreted as a set of values to be assigned to the object’s parameters,
starting at the lowest numbered parameter. If the list is longer than the
number of parameters defined by the object, the extra elements are
ignored. The values of the list are constrained to be within the minimum
and maximum arguments of the object.

bang Sends the currently stored values out the object’s left outlet.

setmessage The word setmessage, followed by a symbol, changes the message that sets
individual values when they change (for example, because the stored
program was changed). The default select message is useful in conjunction
with the multislider object.

Arguments

int Obligatory. Defines the starting parameter index to be covered by the
object.

int Obligatory. Defines the number of parameter indices to be covered by the
object.

float or int Optional. Sets the minimum value of the input and output for all
parameters. The default value is 0.

float or int Optional. Sets the maximum value of the input and output for all
parameters. The default value is 1.

Example: 32 parameters whose value ranges between 1 and 99 are stored
starting at parameter index 13 with the following arguments to
plugmultiparam:

Define multiple
plug-in parameters plugmultiparam

299

plugmultiparam 13 32 1 99

fixed Optional. If the word fixed appears as an argument, the parameters will not
be affected by the Randomize and Evolve commands in the parameter
pop-up menu available in the plug-in edit window when the user holds
down the command key and clicks in the interface. This is appropriate for
gain parameters, where randomization usually produces irritating results.

Output

list Out left outlet: The left outlet produces the current values as a list when the
object receives a bang message.

any message Out left outlet: The plugmultiparam object also produces a message to set
individual values in the collection using the following format

<message name> <index> value

By default, the message name is select—this is appropriate for setting one
value in a multislider object. You can change the name to something else
with the setmessage message described above. The index argument starts at
0 for the first parameter and goes up by 1 for each subsequent
parameter—it is not affected by the starting parameter index argument to
plugmultiparam. The index argument is followed by the current parameter
value.

float Out right outlet: When an int message is received, the value at the
specified parameter index is output.

Examples

Define multiple
plug-in parameters plugmultiparam

300

See Also

plugstore Store multiple plug-in parameter values
pp Define a plug-in parameter
Pluggo Tutorial P4 Using multislider and plugmultiparam

Define a plug-in’s
audio outputs plugout~

301

plugin~ and plugout~ define the signal inputs and outputs to a plug-in. You can use them
within Max as simple thru objects, feeding plugin~ a test signal and routing the output of
plugout~ to a dac~ object. When plugin~ and plugout~ are operating within the runtime
environment however, they act differently. plugin~ ignores its input and instead outputs
the plug-in’s signal inputs fed to it by the host mixer. plugout~ does not output any type
of signal out its outlets; instead it feeds its signal inputs to the plug-in’s audio outputs to
the host mixer.

Input

signal In left and right inlets: When used in Max/MSP, the plugout~ object
echoes its input to its output. When used in the runtime plug-in
environment, the input to plugout~ is copied to the audio outputs of the
plug-in.

Arguments

int Optional. One or two int arguments, if present, specify the output channel
destination (within the plug-in). If no arguments are present, plugout~ has
two outlets assigned to channels 1 and 2.

Output

signal When used in Max/MSP, the signal output of the plugout~ object is simply
its signal input. When used in the runtime plug-in environment, the
signal output to the outlets is undefined, and the input is copied to the
audio outputs of the plug-in.

Examples

Define a plug-in’s
audio outputs plugout~

302

See Also

plugin~ Define a plug-in’s audio inputs

Host-synchronized
sawtooth wave plugphasor~

303

plugphasor~ outputs an audio-rate sawtooth wave that is sample-synchronized to the beat
of the host sequencer. The waveform can be fed to other audio objects to lock audio
processes to the audio of the host.

Input

None.

Arguments

None.

Output

signal The output of plugphasor~ is analogous to phasor~: it ramps from 0 to 1.0
over the period of a beat. If the current host environment does not support
synchronization or the host’s transport is stopped, the output of
plugphasor~ is a zero signal.

Examples

Drive an oscillator with a beat-synced ramp wave

See Also

plugsync~ Report host synchronization information

Receive audio from
another plug-in plugreceive~

304

The plugreceive~ and plugsend~ objects are used to send audio signals from one plug-in to
another. They are used in the implementation of the PluggoBus feature of many of the
plug-ins included with pluggo.

Input

signal The input to the plugreceive~ object comes from a plugsend~ object to which
it is currently connected. Initially, this will be a plugsend~ having the same
name as the plugreceive~ object’s argument.

set The word set, followed by a symbol naming a plugsend~ object, connects
the plugreceive~ object to the specified plugsend~ object(s), and the
plugreceive~ object’s audio output becomes the input to the plugsend~. If the
symbol doesn’t name a plugsend~ object, the audio output becomes zero.

Arguments

symbol Obligatory. Gives the plugreceive~ object a name used for connecting with
one or more plugsend~ objects.

Output

signal The audio signal input to the plugsend~ objects connected to this object. If
no plugsend~ objects are connected, the audio output is zero.

There may be a delay of one processing (I/O) vector size of the host mixer
between the plugreceive~ output and the inputs to the plug-in which the
plugreceive~ is located. This occurs when a plugsend~ occurs later in the
processing chain than the plugreceive~ to which it is sending audio.

Examples

Receive audio from
another plug-in plugreceive~

305

See Also

plugsend~ Send audio to another plug-in

Send audio to
another plug-in plugsend~

306

The plugsend~ and plugreceive~ objects are used to send audio signals from one plug-in to
another. They are used in the implementation of the PluggoBus feature of many of the
plug-ins included with pluggo.

Input

signal The input to the plugsend~ object is mixed with other plugsend~ objects,
which can be in the same plug-in or a different plug-in, and is then sent
out the signal outlets of any connected plugreceive~ objects.

Arguments

symbol Obligatory. Gives the plugsend~ object a name used for connecting with
other plugsend~ and plugreceive~ objects.

Output

None.

Examples

See Also

plugreceive~ Receive audio from another plug-in

Store multiple plug-in
parameter values plugstore

307

The plugstore object works with plugmultiparam to allow you to get values into and out of
plugmultiparam from multiple locations in a patcher.

Input

bang Sends the stored list out the object’s outlet.

list Stores the elements of the list (up to the size of the object) and repeats
them to the object’s outlet.

select The word select, followed by an index and value, stores the value at the
specified index (starting at 1 for the first element) and sends the stored list
out the object’s outlet.

set The word set, followed by an index and value, stores the value at the
specified index (starting at 1 for the first element) but does not output the
stored list.

Arguments

int Obligatory. Sets the number of elements stored in the plugstore object’s list.

Output

list The stored list is output whenever a list, bang, or select message is received.

Examples

See Also

plugmultiparam Define multiple plug-in parameters

Report host
synchronization information plugsync~

308

The plugsync~ object provides information about the current state of the host. Sample
count information is available in any host; even Max. The validity of the other
information output by the object is dependent upon what synchronization capabilities the
host implements; the value from the flags (9th) outlet tells you what information is valid.
Output from plugsync~ is continuous when the scheduler is running.

Input

None.

Arguments

None.

Output

int Out left outlet: 1 if the host’s transport is currently running; 0 if it is
stopped or paused.

int Out 2nd outlet: The current bar count in the host sequence, starting at 1
for the first bar. If the host does not support synchronization, there is no
output from this outlet.

int Out 3rd outlet: The current beat count in the host sequence, starting at 1
for the first beat. If the host does not support synchronization, there is no
output from this outlet.

float Out 4nd outlet: The current beat fraction, from 0 to 1.0. If the host does
not support synchronization, the output is 0. If the host does not support
synchronization, there is no output from this outlet.

list Out 5th outlet: The current time signature as a list containing numerator
followed by denominator. For instance, 3/4 time would be output as the
list 3 4. If the host does not support time signature information, there is no
output from this outlet.

float Out 6th outlet: The current tempo in samples per beat. This number can be
converted to beats per minute using the following formula: (sampling-rate
/ samples-per-beat) * 60. If the host does not support synchronization,
there is no output from this outlet.

Report host
synchronization information plugsync~

309

float Out 7th outlet: The current number of beats, expressed in 1 PPQ. This
number will contain a fractional part between beats. If the host does not
support synchronization, there is no output from this outlet.

int Out 8th outlet: The current sample count, as defined by the host.

int Out 9th outlet: A number representing the validity of the other
information coming from plugsync~. Mask with the following values to
determine if the information from plugsync~ will be valid.

Sample Count Valid 1 (always true)

Beats Valid 2 (2nd, 3rd, 4th, and 7th outlets valid)

Time Signature Valid 4 (5th outlet valid)

Tempo Valid 8 (6th outlet valid)

Transport Valid 16 (left outlet valid)

See Also

plugphasor~ Host-synchronized sawtooth wave

Write sample values
by index poke~

310

Input

signal In left inlet: Signal values you want to write into a buffer~.

In middle inlet: The sample index where values from the signal in the left
inlet will be written. If the signal coming into the middle inlet has a value
of –1, no samples are written.

float Like the peek~ object, poke~ can write float values into a buffer~. Note,
however, that the left two inlets are reversed on the poke~ object compared
to the peek~ object.

In left inlet: Sets the value to be written into the buffer~ at the specified
sample index. If the sample index is not –1, the value is written.

In middle inlet: Converted to int.

In right inlet: Converted to int.

int In left inlet: Converted to float.

In middle inlet: Sets the sample index for writing subsequent sample values
coming in the left inlet. If there is a signal connected to this inlet, a float is
ignored.

In right inlet: Sets the channel of the buffer~ where sample values are
written. The first (left) channel is specified as 1.

list In left inlet: A list of two or more values will write the first value at the
sample index specified by the second value. If a third value is present, it
specifies the audio channel within the buffer~ for writing the sample value.

set The word set, followed by the name of a buffer~, changes the buffer~ where
poke~ will write its incoming samples.

(mouse) Double-clicking on poke~ opens an editing window where you can view
the contents of its associated buffer~ object.

Arguments

symbol Obligatory. Names the buffer~ where poke~ will write its incoming samples.

Write sample values
by index poke~

311

int Optional. Sets the channel number of a multichannel buffer~ where the
samples will be written. The default channel is 1.

Output

None.

Examples

Write into a buffer~ using either signals or numbers

See Also

buffer~ Store audio samples
buffir~ Buffer-based FIR filter
peek~ Read and write sample values

Signal Polar to Cartesian
coordinate conversion poltocar~

312

Input

signal In left inlet: The magnitude (amplitude) of the frequency bin to be
converted into a cartesian (real/imaginary) signal pair.

 In right inlet: The phase of the frequency bin to be converted into a
cartesian (real/imaginary) signal pair.

Arguments

None.

Output

signal Out left outlet: The real part of a frequency domain signal suitable for
input into an ifft~ or fftout~ object.

Out right outlet: The imaginary part of a frequency domain signal suitable
for input into an ifft~ or fftout~ object.

Examples

poltocar~ converts amplitude/phase pairs into the Cartesian pairs that fftout~ uses

Signal Polar to Cartesian
coordinate conversion poltocar~

313

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 26 Frequency Domain Signal Processing with pfft~

Polyphony/DSP
manager for patchers poly~

314

The poly~ object is similar to the patcher object: it lets you encapsulate a patcher inside an
object box. However, as the name suggests, where the patcher object only has one copy of
the encapsulated patcher, the poly~ object allows one or more instances (copies) of a
patcher to be loaded. You specify the patcher filename and the number of instances you
want as arguments to poly~. The maximum number of instances is 1023.

The poly~ object directs signals and events (messages) received in its inlets to in and in~
objects inside patcher instances. The patcher can also contain out and out~ objects to send
signals or events to the outlets of the poly~ object. Messages to the poly~ object control
audio processing in its loaded patcher instances and let you control the routing of events.

Input

anything The number of inlets and outlets for poly~ is determined by the patcher
that is loaded. The inlets for the patcher loaded by a poly~ object accept
both signal and event connections.

The signals are routed inside of the loaded patcher by using the in~ objects
for signals or the in object for events. The number of total inlets in a poly~
object is determined by the highest number of an in~ or in object in the
loaded patcher (e.g., if there is an in~ with argument 3 and an in with
argument 4, the poly~ object will have four inlets. All the inlets accept
signal connections even though there may not be an in~ object
corresponding to each inlet.

Signal inputs are fed to all instances.

any message In any inlet: Messages are sent to the in objects in the poly~ object's current
target patcher instance(s). Messages received in the left inlet of poly~ are
sent to in 1 objects, messages in the second inlet are sent to in 2 objects, and
so on.

signal In any inlet: Sends a signal to the corresponding in~ object in all patcher
instances. Signals connected to the left inlet of poly~ are received by all in~
1 objects, signals connected to the second inlet of poly~ are sent to all in~ 2
objects, and so on.

list In any inlet: If you want to send a message to a poly~ instance that starts
with one of the words used to control the poly~ object itself, prepend the
message with the word list. For example, the message list target 2 sent to the
left inlet of poly~ will output target 2 out the outlet of all in 1 objects, rather
than changing the current target instance to the second patcher.

Polyphony/DSP
manager for patchers poly~

315

busymap In left inlet: The word busymap, followed by a number which specifies a
message outlet number, will report voice busy states out the specified
message outlet of the poly~ object.

down In left inlet: The word down, followed by a number which is a power of 2,
specifies that upsampling by the designated power of two is to be done on
the currently loaded patcher. The message down 2 specifies downsampling
by a factor of 2 (e.g., 22050 Hz at a sampling rate of 44100 Hz). The new
sampling rate used by the patcher will be set on the next compilation of
the DSP chain; the down message does not force a recompilation of the
DSP chain.

midinote In left inlet: The word midinote, followed by one or more numbers, will send
the data to the first in object of the first instance of the loaded patcher that
has received a note-on message without a corresponding note-off message.
The first number after the word midinote is the note number, followed by
the velocity. As an example, sending midinote 60 64 to a poly~ with two
instances will mark the first one busy. A subsequent midinote 67 64 will be
directed to the second patcher instance. Once a midinote 60 0 is received by
the poly~ object, it is sent to the first instance (since poly~ keeps track of
which instance received the note-on message). Similarly, a midinote 67 0 is
directed to the second instance.

mute In left inlet: The word mute, followed by a number and a zero or one, will
turn signal processing off for the specified instance of a patcher loaded by
the poly~ object and send a bang message to the thispoly~ object for the
specified instance. When the second number is a 1 processing in the
patcher instance is turned off (muted). When the second number is a 0, the
processing in the patcher instance is turned on. The message mute 0 1 mutes
all instances, and mute 0 0 turns on signal processing for all instances of the
patcher.

mutemap In left inlet: The word mutemap, followed by a number which specifies a
message outlet number, will report voice mutes out the specified message
outlet of the poly~ object.

note In left inlet: The word note, followed by a message, will send the data to the
first in object of the first instance of the patcher that has not marked itself
“busy” by sending a 1 to a thispoly~ object inside the patcher instance.

open In left inlet: The word open, followed by a number, opens the specified
instance of the patcher. You can view the activity of any instance of the

Polyphony/DSP
manager for patchers poly~

316

patcher up to the number of voices (set by the voices message or by an
argument to the poly~ object). You can use this message to view an
individual instance of the patcher at work. With no arguments, the open
message opens the instance that is currently the target (see the target
message below).

steal In left inlet: The word steal, followed by a zero or one, toggles voice
stealing. If voice stealing is set using the steal 1 message, the poly~ object
sends the data from the note or midinote messages to instances that are still
marked “busy” — this can result in clicks depending on how the instances
handle the interruption. The default is 0 (voice stealing off).

target In left inlet: The word target, followed by a number, specifies the poly~
instance that will receive subsequent messages (other than messages
specifically used by the poly~ object itself) arriving at the poly~ object's
inlets. target 0 turns off input to all instances. target 1 routes messages to the
first instance, etc.

voices In left inlet: The word voices, followed by a number, changes the number of
instances (copies) of the loaded patcher. Instances of the patcher are loaded
or deleted as needed. The maximum number of instances is 1023.

allnotesoff In left inlet: The word allnotesoff can be used to turn off all playing notes by
sending a message to each instance with a playing note. The message
consists of the MIDI pitch most recently received via the note or midinote
message followed by a 0 (meaning zero velocity or note-off).

up In left inlet: The word up, followed by a number which is a power of 2,
specifies that upsampling by the designated power of two is to be done on
the currently loaded patcher. The message up 2 specifies upsampling by a
factor of 2 (e.g., 88200 Hz at a sampling rate of 44100 Hz). The new
sampling rate used by the patcher will be set on the next compilation of
the DSP chain. The up message does not force a recompilation of the DSP
chain.

wclose In left inlet: The word wclose, followed by a number, will close the window
which contains the instance of the loaded patcher identified by the
numbered index. It is the complement to the open message. When used
without the number argument, wclose will close the patcher window with
the highest numbered index.

Polyphony/DSP
manager for patchers poly~

317

vs In left inlet: The word vs, followed by a number which is a power of 2 in
the range 2-2048, specifies the signal vector size for the poly~ object’s
loaded patch. The signal vector size will be set on the next compilation of
the DSP chain. The vs message does not force a recompilation of the DSP
chain. vs 0 specifies no fixed vector size. The default is the current signal
vector size.

Arguments

symbol Obligatory. The first argument must be the name of a patcher.

Note: Unlike the patcher object, a subpatch window is not automatically
opened for editing when a patcher argument is supplied for the poly~
object; the patcher containing the object must already exist and be found
in the Max/MSP search path.

int Optional. After the patcher name argument, the number of instances of
the loaded patcher (which correspond to the number of available “voices”)
is specified. The default value is 1, and the maximum number of instances
is 1023. The number of available voices may be dynamically changed by
using the voices message.

local Optional. The word local, followed by a zero or one, toggles local scheduling
for the poly~ object’s loaded patcher. Local scheduling means that the poly~
object maintains its own scheduler that runs during its audio processing
rather than using the global Max scheduler. This allows finer resolution for
events generated by multiple patcher instances. However, no scheduling
occurs if audio processing is turned off, either globally or locally for the
poly~ object or one or more of its instances. The default is off (local 0). Local
scheduling cannot be changed by sending messages to the poly~ object.
Scheduler locality is permanent for any patcher which is loaded.

up Optional. The word up, followed by a number which is a power of 2,
specifies that upsampling by the designated power of two is to be done on
the currently loaded patcher. The message up 2 specifies upsampling by a
factor of 2 (e.g., 88200 Hz at a sampling rate of 44100 Hz). Although both
up and down are permissible arguments to the poly~ object, the down
message takes precedence over up.

down Optional. The word down, followed by a number which is a power of 2,
specifies that downsampling by the designated power of two is to be done
on the currently loaded patcher. The message down 2 specifies

Polyphony/DSP
manager for patchers poly~

318

downsampling by a factor of 2 (e.g., 22050 Hz at a sampling rate of 44100
Hz). Although both up and down are permissible arguments to the poly~
object, the down message takes precedence over up.

args Optional. The word args can be used to initialize any pound-sign arguments
(e.g., #1) in the loaded patcher. If used, the args argument must be the last
argument word used—everything which appears after the word args will be
treated as an argument value.

Output

anything The number of outlets of a poly~ object is determined by the sum of the
highest argument numbers of the out and out~ objects in the loaded
patcher. For instance, if there is an out 3 object and an out~ 2 object, the
poly~ object will have five outlets. The signal outputs corresponding to the
out~ objects are leftmost in the poly~ object, followed by the event outlets
corresponding to the out objects.

Signals sent to the inlet of out~ objects in each patcher instance are mixed
if there is more than one instance and appear at the corresponding outlets
of the poly~ object.

Examples

The poly~ object manages multiple instances of a subpatch

See Also

in Message input for a patcher loaded by poly~
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~

Polyphony/DSP
manager for patchers poly~

319

out~ Signal output for a patcher loaded by poly~
patcher Create a subpatch within a patch
thispoly~ Control poly~ voice allocation and muting
Tutorial 20 MIDI control: Sampler
Tutorial 21 MIDI control: Using the poly~ object

Variable range
signal folding pong~

320

Input

signal or float In left inlet: All incoming signal or float values which exceed the high or
low value ranges specified by arguments to the pong~ object are either
folded back into this range (i.e., values greater than one are reduced by one
plus the amount that they exceed one, and negative values are handled
similarly) or wrapped (i.e., values greater than one are reduced by two, and
negative values are increased by two), according to the mode of the pong~
object (see the mode message below).

In center or right inlet: The pong~ objects accepts low and high range
values for the range outside of which folding occurs. If the pong~ object has
either one or no arguments, pong~ will have two inlets. The right inlet is
used to set the high range value above which signal folding occurs, the low
range value is assumed to be zero.

If the pong~ object has two arguments, the object has three inlets. The
center inlet specifies the low value range below which folding occurs, and
the right inlet specifies the high range limit. The default object has no
arguments, and the right inlet specifies the upper value.

If the current low range value is greater than the high range value, their
behavior is swapped.

mode The word mode, followed by a 0 or 1, sets the folding mode of the pong~
object.

pong 0 sets the pong~ object to signal folding. Values greater than one are
reduced by one plus the amount that they exceed one, and negative values
are handled similarly. This is the default mode of the object.

pong 1 sets the pong~ object to signal wrapping. Values greater than one are
reduced by two, and negative values are increased by two.

Arguments

int Optional. An optional argument is used to set the mode of the pong~ A 0
sets signal folding (the default), and a 1 sets signal wrapping (see the mode
message, above).

float Optional. When used with the optional mode argument, the low and high
range values for the pong~ objects can be specified by two additional float

Variable range
signal folding pong~

321

arguments. If only one argument is given following the mode argument
(e.g., pong~ 0 .1), it specifies the low range value of the pong~ object above
which folding occurs, and the high range value is set to 1.0 (the default). If
two arguments are present, the first argument specifies the low range value
and the second argument specifies the high range value.

Output

signal The folded signal or float value.

Examples

pong~ distorts a signal by folding it or wrapping it around an upper and lower threshold
level

See Also

phasewrap~ Wrap a signal between - ! � and !

Signal power function pow~

322

pow~ raises the base value (set in the right inlet) to the power of the exponent (set in the
left inlet). Either inlet can receive a signal, float or int.

Input

signal In left inlet: Sets the exponent.

In right inlet: Sets the base value.

float or int In left inlet: Sets the exponent. If there is a signal connected to the left
inlet, a number received in the left inlet is ignored.

In right inlet: Sets the base value. If there is a signal connected to the right
inlet, a number received in the right inlet is ignored.

Arguments

float or int Optional. Sets the base value. The default value is 0. If a signal is connected
to the right inlet, the argument is ignored.

Output

signal The base value (from the right inlet) raised to the exponent (from the left
inlet).

Examples

Computes the mathematical expression xy for converting to logarithmic or exponential
scale

Signal power function pow~

323

See Also

log~ Logarithm of a signal
curve~ Exponential ramp generator

Define a
plug-in parameter pp

324

The pp object (an abbreviation for plug-in parameter) defines plug-in parameters. It has a
number of optional arguments that let you define the parameter minimum and
maximum, hide the parameter from display, set the color of the egg slider associated with
it, etc. You connect the output of the pp object to something you want to control with a
stored parameter. If your plug-in will use a Max patcher interface, you need to connect
the interface element that will change the parameter’s value to the inlet of the pp object.
The pp object will send new parameter values out its outlet at various times: when you
move an egg slider, when the user switches to a new effect program, and when the host
mixer is automating the parameter changes of your plug-in.

Internally, the pp object and the runtime plug-in environment store values between 0 and
1.0. By giving the pp object optional arguments for minimum and maximum, you can
store and receive any range of values and the object will convert between the range you
want and the internal representation. If for some reason you want to know the internal 0-
1.0 representation, you can get it from the object’s right outlet. If you want to send a
value that is based on the internal 0-1.0 representation, use the rawfloat message.

Input

bang Sends the current value of the parameter out the object’s right outlet in its
internal (unscaled) form between 0 and 1.0, then out the object’s left
outlet scaled by the object’s minimum and maximum.

float or int In left inlet: Sets the current value of the parameter and then sends the
new value out the right and left outlets as described above for the bang
message. The incoming number is constrained between the minimum and
maximum values of the object.

float or int In right inlet: Sets the current value of the parameter without any output.
The incoming number is constrained between the minimum and
maximum values of the object.

open Same as choosing Get Info… from the Object menu.

text The word text, followed by a single symbol, allows you to set the text
displayed in the Parameters view of the plug-in edit window when the user
moves the mouse over the egg slider corresponding to the parameter.

rawfloat The word rawfloat, followed by a number between 0 and 1.0 sets the current
parameter value to the number without scaling it by the object’s minimum
and maximum. The value is then send out the right and left outlets of the
object as described above for the bang message.

Define a
plug-in parameter pp

325

(Get Info...) Choosing Get Info… from the Object menu opens an Inspector for
editing a description of the parameter displayed in the Parameters view of
the plug-in edit window when the user moves the cursor over the egg slider
corresponding to the parameter.

Inspector

The behavior of a pp object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any pp object
displays the pp Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

Typing in the Describe Parameter text area specifies the parameter
description.

The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

The pp object takes a number of arguments. They are listed in the order that they need to
appear.

int Obligatory. The first argument sets the parameter number. The first
parameter is 1. Parameter numbers should be consecutive (but they need
not be), and two pp objects should not have the same parameter number.
An error will be reported in the Messages view of the runtime plug-in
environment if duplicate parameter numbers are encountered.

hidden Optional. If the word hidden appears as an argument, the parameter will not
be given an egg slider in the plug-in edit window and will not appear in
the pop-up menu generated by the plugmod object.

fixed Optional. If the word fixed appears as an argument, the parameter will not
be affected by the Randomize and Evolve commands in the parameter
pop-up menu available in the plug-in edit window when the user holds
down the command key and clicks in the interface. This is appropriate for
gain parameters, where randomization usually produces irritating results.

Define a
plug-in parameter pp

326

c2-c5 Optional. If c2, c3, c4,or c5 appears as argument, the color of the egg slider
is set to something other than the usual purple. Currently c2 is Wild
Cherry, c3 is Turquoise, c4 is Harvest Gold, and c5 is Peaceful Orange.

symbol Optional. The next symbol after any of the optional keywords names the
parameter. This name appears in the Name column of the Parameters view
and in the pop-up menu generated by the plugmod object.

float or int Optional. After the parameter name, a number sets the minimum value of
the parameter. The minimum and maximum values determine the range
of values that are sent into and out of the pp object’s outlets, as well as the
displayed value in the Parameters view. The type of the minimum value
determines the type of the parameter values the object accepts and outputs.
If the minimum value is an integer, the parameters will interpreted and
output as integers. If the minimum value is a float, the parameters will be
interpreted and output as floats.

float or int Optional. After the minimum value, a number sets the maximum value of
the parameter. The minimum and maximum values determine the range
of values that are sent into and out of the pp object’s outlets, as well as the
displayed value in the Parameters view.

symbol Optional. After the minimum and maximum values, a symbol sets the
label used to display the units of the parameter. Examples include Hz for
frequency, dB for amplitude, and ms for milliseconds.

choices Optional. If the word choices appears after the minimum and maximum
values, subsequent symbol arguments are taken as a list of discrete settings
for the object and are displayed as such in the Parameters view. As an
example pp 1 Mode 0 3 choices Thin Medium Fat would divide the parameter space
into three values. 0 (anything less than 0.33) would correspond to Thin,
0.5 (and anything between 0.33 and 0.67) would correspond to Medium,
and 1 (and anything between 0.67 and 1.0) would correspond to Fat. Only
the name of the choice, rather than the actual value of the parameter, is
displayed in the Parameters view.

db Optional. If the word choices does not appear as argument, the word db (all
lower-case) can be used to specify that the value of the parameter be
displayed in decibel notation, where 1.0 is 0 dB and 0.0 is negative infinity
dB. Caution: be careful that you don’t use this in place of the symbol “dB”
(with an upper-case B) given for the parameter name to be displayed in the
Name column the Parameters view. (see symbol message, above.)

Define a
plug-in parameter pp

327

Output

int or float Out left outlet: The scaled value of the parameter is output when it is
changed within the runtime environment or when a bang, int, float, or
rawfloat message is received in the object’s inlet. The parameter value can be
changed in the runtime environment in the following ways: the user
moves an egg slider, the parameter is being automated by the host mixer,
or the user has selected a new effect program for the plug-in within the
host mixer.

float Out right outlet: The unscaled value of the parameter is output when it is
changed by the runtime environment or when a bang, int, float, or rawfloat
message is received in the object’s inlet. You might use this value if you
want to use a different value in your plug-in’s computation than you
display to the user.

Examples

See Also

plugmultiparam Define multiple plug-in parameters
plugstore Store multiple plug-in parameter values

Define plug-in tempo
and sync parameters pptempo

328

Input

bang Sends the current value of the mode parameter (0 to 3) out the object’s
right outlet and then sends the current value of the tempo parameter out
the object’s left outlet.

int In left inlet: Sets the current value of the tempo parameter and then sends
the new value out left outlet. The incoming number is constrained
between the minimum and maximum values of the object.

In right inlet: Sets the current value of the mode parameter and then sends
the new value out the right outlet. The number is constrained between 0
and 3. Mode values are as follows:

Value Description

0 Free Mode. If there is an egg slider display associated with
this parameter, it is disabled. It's assumed that another
parameter will set the “tempo” in units of milliseconds or
Hertz.

1 Host Mode. If there is an egg slider display associated with
this parameter, it is enabled but the user cannot change it.
Instead the tempo is set by the host and merely displayed by
the slider. The patch should enable synchronizing to the
host in some way (probably by using the plugsync~ or
plugphasor~ objects).

2 PluggoSync Mode. This mode functions similarly to Host
mode in that the egg slider is enabled but cannot be
changed by the user. Instead the tempo is set by the host
and merely displayed by the slider. The patch should enable
synchronizing to PluggoSync in some way.

3 User-Defined Tempo (UDT) Mode. In this mode, there is no
synchronization and the user can change the tempo slider
to any desired value. The patch should use this value to
calculate some sort of time-based behavior.

set In right inlet: The word set, followed by a number, sets the sync mode
parameter to the number but does not output the sync mode and the
tempo.

Define plug-in tempo
and sync parameters pptempo

329

rawfloat In left inlet: The word rawfloat, followed by a number between 0 and 1, sets
the tempo to a value scaled between the minimum and maximum values
scaled by the number. For example, if the minimum tempo were 100 and
the maximum were 200, the message rawfloat 0.5 would set the tempo to
150.

In right inlet: The word rawfloat, followed by a number between 0 and 1,
sets the sync mode parameter to a value based on multiplying the number
by 3 and truncating. Numbers below 0.33 set the sync mode to 0 (Free),
numbers between 0.33 and 0.66 set it to Host, numbers at or above 0.67
and less than 1 set it to PluggoSync, and numbers equal to 1 set it to User-
Defined Tempo.

rawlist The word rawlist, followed by two numbers, is equivalent to sending the
rawfloat message with the first number to the left inlet and the rawfloat
message with the second number to the right inlet.

(Get Info...) Choosing Get Info… from the Object menu opens an Inspector for
editing a description of the parameter displayed in the Parameters view of
the plug-in edit window when the user moves the cursor over the egg slider
corresponding to the parameter.

Inspector

A parameter description can be assigned to a pptempo object and can be
edited using its Inspector. If you have enabled the floating inspector by
choosing Show Floating Inspector from the Windows menu, selecting
any pptempo object displays the pptempo Inspector in the floating window.
Selecting an object and choosing Get Info… from the Object menu also
displays the Inspector.

Typing in the Describe Parameter text area specifies the parameter
description.

The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Define plug-in tempo
and sync parameters pptempo

330

Arguments

int Obligatory. A number greater than or equal to 1 sets the parameter index
of the tempo parameter.

int Obligatory. A number greater than or equal to 1 sets the parameter index
of the sync mode parameter.

hidden Optional. If the word hidden appears as an argument, the parameter will not
be given an egg slider in the plug-in edit window and will not appear in
the pop-up menu generated by the plugmod object.

fixed Optional. If the word fixed appears as an argument, the parameter will not
be affected by the Randomize and Evolve commands in the parameter
pop-up menu available in the plug-in edit window when the user holds
down the command key and clicks in the interface.

c2-c5 Optional. If c2, c3, c4, or c5 appears as argument, the color of the egg slider
is set to something other than the usual purple. Currently c2 is Wild
Cherry, c3 is Turquoise, c4 is Harvest Gold, and c5 is Peaceful Orange.

symbol Optional. The next symbol after any of the optional keywords names the
tempo parameter. This name appears in the Name column of the
Parameters view and in the pop-up menu generated by the plugmod object.
The name of the sync mode parameter will be the name of the tempo
parameter followed by the word mode. The default parameter name is
ParamN, where N is the index assigned to the tempo parameter by the first
argument to pptempo.

float or int Optional. After the parameter name, a number sets the minimum value of
the parameter. The minimum and maximum values determine the range
of values that are sent into and out of the pptempo object's left inlet and
outlet, as well as the displayed value in the Parameters view of the plug-in
edit window. The type of the minimum value determines the type of the
parameter values the object accepts and outputs. If the minimum value is
an integer, the parameters will interpreted and output as integers. If the
minimum value is a float, the parameters will be interpreted and output as
floats.

float or int Optional. After the minimum value, a number sets the maximum value of
the parameter. The minimum and maximum values determine the range
of values that are sent into and out of the pptempo object's left inlet and

Define plug-in tempo
and sync parameters pptempo

331

outlet, as well as the displayed value in the Parameters view of the plug-in
edit window.

(Get Info...) Optional. Choosing Get Info… from the Object menu opens an Inspector
for editing a description of the parameter that is displayed in the
Parameters view of the plug-in edit window when the user moves the
cursor over the egg slider corresponding to the parameter.

Output

float or int Out left outlet: The scaled value of the tempo parameter is output when it
is changed within the runtime environment or when a bang, int, float, or
rawfloat message is received in the object's inlets. The parameter value can be
changed in the runtime environment in the following ways: the user
moves an egg slider, the parameter is being automated by the host mixer,
or the user has selected a new effect program for the plug-in within the
host mixer.

Out right outlet: The value of the sync mode parameter, between 0 and 3,
when the parameter is changed within the runtime environment, an int,
float, or rawfloat message is received in the object's right inlet, or a bang
message is received in the object's inlets. The modes are described above in
the Input section.

Examples

pptempo provides tempo and synchronization information to pptime

See Also

pp Define a plug-in parameter
pptime Define a time-based plug-in parameter

Define time-based
plug-in parameter pptime

332

The pptime object defines time-based plug-in parameters for use in plug-ins which provide
synchronization with a host sequencing application. Like the pp object, pptime has a
number of optional arguments that let you define the parameter and control the
appearance when using the generic plug-in interface.

The pptime object supports the four modes of host synchronization. The functionality of
the object varies according to its mode of operation. In Free mode, pptime works like pp for
the ms/Hz parameter using the leftmost inlet and outlet. In Host sync mode and Pluggo
Sync mode, the eggslider display changes to a smaller slider plus a unit value pop-up menu.
When a change to either the slider or menu is made, the beat value output (rightmost)
produces a value you can feed to a rate~ object. The User-Defined Tempo mode expects a
tempo value to be fed to pptime via the tempo message (you can use pptempo for this).
pptime then calculates the ms/Hz value based on the current tempo, unit multiplier, and
unit value and outputs the value out the leftmost outlet.

Input

float or int In left inlet: Sets the parameter indices for the ms/Hz value.

In second inlet: Sets the unit multiplier value. Values are in the range 0.0-
15.0.

In third inlet: Sets the unit index. The unit index is expressed in terms of
float or int values between 0 and 18, with each number representing a unit
of musical subdivision.

Define time-based
plug-in parameter pptime

333

The unit indices are defined as follows:

unit index note value

0 1

1 1/2

2 1/2. (dotted half)

3 1/2t (1/2 triplet)

4 1/4

5 1/4. (dotted 1/4)

6 1/4t (1/4 triplet)

7 1/8

8 1/8. (dotted 1/8)

9 1/8t (1/8 triplet)

10 1/16

11 1/16. (dotted 1/16)

12 1/16t (1/16 triplet)

13 1/32

14 1/32. (dotted 1/32)

15 1/32 (1/32 triplet)

16 1/64

17 1/64. (dotted 1/64)

18 1/64 (1/64 triplet)

In fourth inlet: Sets the unit value input.

bang Sends the current value of the parameter out the object’s left outlet.

mode In left inlet: The word mode, followed a number in the range 0-3, specifies
the host sync mode. Host sync modes are defined as follows: 0=Free,
1=Host Sync, 2=Pluggo Sync, 3=User-Defined Tempo. The default is 1
(Free mode).

open Same as choosing Get Info… from the Object menu.

Define time-based
plug-in parameter pptime

334

rawfloat The word rawfloat, followed by a number between 0 and 1.0 sets the current
parameter value to the number without scaling it by the object’s minimum
and maximum. The value is then send out the right and left outlets of the
object as described above for the bang message.

timesig In left inlet: The word timesig, followed by two numbers, are used to specify
the time signature. The time signature (composed of a numerator and
denominator) is used to calculate the beat value in sync modes and the
ms/Hz value in User-Defined Tempo mode. This list can be fed from the
output of the plugsync~ object. The default is 4/4 (timesig 4 4).

tempo In left inlet: If the pptime object is in User-determined Tempo mode, the
word tempo, followed a number, specifies the current tempo, and send the
ms/Hz value associated with that tempo out the left outlet.

(Get Info...) Choosing Get Info… from the Object menu opens an Inspector window
for editing a description of the parameter that is displayed in the
Parameters view of the plug-in edit window when the user moves the
cursor over the egg slider corresponding to the parameter. This command
is not available in the runtime plug-in environment.

Inspector

A parameter description can be assigned to a pptime object and can be
edited using its Inspector. If you have enabled the floating inspector by
choosing Show Floating Inspector from the Windows menu, selecting
any pptime object displays the pptime Inspector in the floating window.
Selecting an object and choosing Get Info… from the Object menu also
displays the Inspector.

Typing in the Describe Parameter text area specifies the parameter
description.

The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

The pptime object takes three required arguments plus numerous optional
ones. They are listed in the order that they need to appear.

Define time-based
plug-in parameter pptime

335

float Obligatory. The three required float arguments are the parameter indices
for the ms/Hz value, the multiplier value, and the unit index.

hidden Optional. If the word hidden appears as an argument, the parameter will not
be given an egg slider in the plug-in edit window and will not appear in
the pop-up menu generated by the plugmod object.

fixed Optional. If the word fixed appears as an argument, the parameter will not
be affected by the Randomize and Evolve commands in the parameter
pop-up menu available in the plug-in edit window when the user holds
down the command key and clicks in the interface. This is appropriate for
gain parameters, where randomization usually produces irritating results.

c2-c4 Optional. If c2, c3, or c4 appears as argument, the color of the egg slider is
set to something other than the usual purple. Currently c2 is Wild Cherry,
c3 is Turquoise, and c4 is Harvest Gold.

symbol Optional. The next symbol after any of the optional keywords names the
parameter. This name appears in the Name column of the Parameters view
and in the pop-up menu generated by the plugmod object.

float or int Optional. After the parameter name, a number sets the minimum value of
the parameter. The minimum and maximum values determine the range
of values that are sent into and out of the pptime object’s outlets, as well as
the displayed value in the Parameters view. The type of the minimum
value determines the type of the parameter values the object accepts and
outputs. If the minimum value is an integer, the parameters will
interpreted and output as integers. If the minimum value is a float, the
parameters will be interpreted and output as floats.

float or int Optional. After the minimum value, a number sets the maximum value of
the parameter. The minimum and maximum values determine the range
of values that are sent into and out of the pptime object’s outlets, as well as
the displayed value in the Parameters view.

symbol Optional. After the minimum and maximum values, a symbol sets the
label used to display the units of the parameter. Examples include Hz for
frequency, dB for amplitude, and ms for milliseconds.

Output

int or float Out left outlet: The scaled value of the parameter is output when it is
changed within the runtime environment or when a bang, int, float, or

Define time-based
plug-in parameter pptime

336

rawfloat message is received in the object’s inlet. The parameter value can be
changed in the runtime environment in the following ways: the user
moves an egg slider, the parameter is being automated by the host mixer,
or the user has selected a new effect program for the plug-in within the
host mixer.

Out second outlet: The unit multiplier value. Values are in the range 0.0-
15.0.

Out third outlet: The unit index. The unit index is expressed in terms of
float or int values between 0 and 18

Out fourth Outlet: The beat value output.

Examples

Use pptime to control beat-and/or time-syncronized parameters

See Also

pp Define a plug-in parameter
pptempo Define plug-in tempo and sync parameter

Smooth an
incoming signal rampsmooth~

337

Input

signal or float A signal or value to be smoothed. Each time an incoming value changes,
the rampsmooth~ object begins a linear ramp over a specified number of
samples to reach the new value.

ramp In left inlet: The word ramp, followed by a number, specifies the number of
samples over which an signal will be smoothed. Each time an incoming
value changes, the rampsmooth~ object begins a linear ramp of the specified
number of samples to reach the new value. The default value is 0.

rampdown In left inlet: The word rampdown, followed by a number, specifies the
number of samples over which an signal will be smoothed when an
incoming value less than the current value arrives.

rampup In left inlet: The word rampup, followed by a number, specifies the number
of samples over which an signal will be smoothed when an incoming value
greater than the current value arrives.

Arguments

int Optional. The number of samples across which to generate a ramp up or
ramp down can be specified by a pair of numbers.

Examples

 rampsmooth~ performs linear smoothing on an input signal

Smooth an
incoming signal rampsmooth~

338

See Also

slide~ Filter a signal logarithmically

Band-limited
random signal rand~

339

Input

signal The frequency at which a new random number between –1 and 1 is
generated. rand~ interpolates linearly between random values chosen at the
specified rate.

float or int Same as signal. If there is a signal connected to the inlet, a float or int is
ignored.

Arguments

float or int Optional. Sets the initial frequency. The default value is 0. If a signal is
connected to the inlet, the argument is ignored.

Output

signal A signal consisting of line segments between random values in the range
–1 to 1. The random values occur at the frequency specified by the input.

Examples

Use rand~ to create roughly band-limited noise, or as a control signal to create random
variation

See Also

line~ Linear ramp generator
noise~ White noise generator
pink~ Pink noise generator

Time-scale the output
of a phasor~ rate~

340

Input

signal In left inlet: An input signal from a phasor~ object. The rate~ object time
scales the input signal from a phasor~ by a multiplier value. The multiplier
value can be specified as an argument or received as a float to the rate~
object’s right inlet.

float In left inlet: Sets the phase value for the rate~ object’s signal output.

In right inlet: The signal multiplier value used to scale the phasor~ signal
input. Float values less than 1.0 create several ramps per phase cycle.
Numbers greater than 1.0 create fewer ramps. This can be useful for
synchronizing multiple processes to a single reference phasor~ object,
preserving their ratio relationships.

goto In left inlet: The word goto, followed by a float, causes the rate~ object to
jump immediately to the specified value. An optional second argument
may be used to specify the time at which to jump to the value (e.g., goto 1.0
.5 will output a value of 1.0 at the halfway point of the phasor~ object’s
input signal ramp).

reset In left inlet: The word reset will lock the output to the input on its next
reset. It is equivalent to the message goto 0. 0.

sync In left inlet: The word sync, followed by a number between 0 and 2 or the
words cycle, lock, or off, sets the sync mode of the rate~ object. The sync
mode determines whether or not the rate~ “in” will stay in phase with the
input signal, and the method used for synchronization. When the output
of the rate~ object is “in phase,” the input and output signals align
precisely at the least common multiple of their periods (i.e., they pass
through zero and begin a new cycle at precisely the same time). If the
signals are in phase, and a new multiplier value is received, the rate~ object
changes the frequency of its output ramp accordingly. However, the
change in multiplier values means that the two signals may be out of
phase. The rate~ object handles this situation in one of three different
ways, depending on the sync mode:

Time-scale the output
of a phasor~ rate~

341

The sync modes are described below:

mode description

cycle The messages sync 0 or sync cycle set the cycle mode of the rate~ object (the
default mode). In cycle mode, the rate~ object does not change the phase
of its output until the end of the current cycle. When the input ramp
reaches its peak and starts over from zero, the rate~ object immediately
restarts the output ramp, causing a discontinuity in the output signal, and
immediate phase synchronization.

lock The messages sync 1 or sync lock set the lock mode of the rate~ object. In sync
lock mode, the rate~ object performs synchronization whenever a new
multiplier is received. The rate~ object immediately calculates the proper
ramp position which corresponds to being “in phase” with the new
multiplier value, and jumps to that position.

off The messages sync 2 or sync off disables the sync mode of the rate~ object. In
this mode rate~ never responds to phase differences; when a new multiplier
is received, the rate~ object adjusts the speed of its output ramps and they
continue without interruption. Since this mode never introduces a
discontinuous jump in the ramp signal, it may be useful if phase is
unimportant.

Arguments

float Optional. The multiplier value used to scale the output signal.

Time-scale the output
of a phasor~ rate~

342

Examples

Use rate~ to generate synchronized waveforms or control sources

See Also

phasor~ Sawtooth waveform generator
sync~ Synchronize MSP with an external source
techno~ Signal-driven sequencer

Receive signals
without patch cords receive~

343

Input

signal The receive~ object receives signals from all send~ objects that share its
name. It adds them together and sends the sum out its outlet. If no send~
objects share the current name, the output of receive~ is 0. The send~
objects need not be in the same patch as the corresponding receive~.

set The word set, followed by a symbol, changes the name of the receive~ so that
it connects to different send~ objects that have the symbol as a name. If no
send~ objects exist with the name, the output of receive~ is 0.

Arguments

symbol Obligatory. Sets the name of the receive~ object.

Output

signal The combination of all signals coming into all send~ objects with the same
name as the receive~.

Examples

Signals can be received from any loaded patcher, without patch cords

See Also

send~ Transmit signals without patch cords
Tutorial 4 Fundamentals: Routing signals

Record sound
into a buffer record~

344

Input

signal In left inlet: When recording is turned on, the signal is recorded into the
sample memory of a buffer~ at the current sampling rate.

In middle inlets: If record~ has more than one input channel, these inlets
record the additional channels into the buffer~.

int In left inlet: Any non-zero number starts recording; 0 stops recording.
Recording starts at the start point (see below) unless append mode is on.

int or float In the inlet to the left of the right inlet: Set the start point within the
buffer~ (in milliseconds) for the recording. By default, the start point is 0
(the beginning of the buffer~).

In right inlet: Sets the end point of the recording. By default, the end
point is the end of the buffer~ object’s allocated memory.

append The word append, followed by a non-zero number, enables append mode. In
this mode, when recording is turned on, it continues from where it was last
stopped. append 0 disables append mode. In this case, recording always starts
at the start point when it is turned on. Append mode is off initially by
default.

loop The word loop, followed by a non-zero number, enables loop recording
mode. In loop mode, when recording reaches the end point of the
recording (see above) it continues at the start point. loop 0 disables loop
recording mode. In this case, recording stops when it reaches the end
point. Loop mode is off initially by default. The record object also takes
into account any changes in the buffer~ object’s sampling rate if the buffer~
object’s length is modified for the purpose of establishing loop points.

set The word set, followed by the name of a buffer~, changes the buffer~ where
record~ will write the recorded samples.

(mouse) Double-clicking on record~ opens an editing window where you can view
the contents of its associated buffer~ object.

Arguments

symbol Obligatory. Names the buffer~ where record~ will write the recorded
samples.

Record sound
into a buffer record~

345

int Optional, following the buffer~ name argument. Specifies the number of
input channels (1, 2, or 4). This determines the number of inlets record~
has. The two rightmost inlets always set the record start and end points.

Output

signal Sync output. During recording, this outlet outputs a signal that goes from 0
when recording at the start point to 1 when recording reaches the end
point. When not recording, a zero signal is output.

Examples

Store a signal excerpt for future use

See Also

2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
groove~ Variable-rate looping sample playback
play~ Position-based sample playback
Tutorial 13 Sampling: Recording and playback

Antialiased rectangular (pulse)
oscillator rect~

346

Input

signal In left inlet: Sets the frequency of the oscillator.

In middle inlet: Sets the pulse width of the oscillator. Signal is wrapped
into the range 0-1. A value of 0.5 will produce a rectangular wave that
spends equal amounts of time on the positive and negative edges of its
cycle.

In right inlet: (optional) A sync signal. When the control signal crosses
from below 0.5 to above 0.5, the oscillator resets itself. A phasor~ object
works well for this purpose. The classic use is to set this control signal to
your fundamental frequency and “sweep” the left frequency input in a
range somewhere several octaves higher than the fundamental.

int or float In left inlet: Sets the frequency of the oscillator.

In middle inlet: Sets the pulse width of the oscillator. Signal is wrapped
into the range 0-1. A value of 0.5 will produce a rectangular wave that
spends equal amounts of time on the positive and negative edges of its
cycle.

Arguments

int or float (Optional) First argument sets the initial frequency of the oscillator. The
default is 0. Second argument sets the pulse width. The default is 0.5.

Output

signal An antialiased rectangular waveform. A ideal, straight-line rectangular
wave generated in a computer contains alias frequencies that can sound
irritating. rect~ produces a nice, analog-esque output waveform.

Antialiased rectangular (pulse)
oscillator rect~

347

Examples

Spectral comparison of rect~ and an ideal rectangular wave driven by a phasor~

See Also

cycle~ Table lookup oscillator
phasor~ Sawtooth wave generator
saw~ Antialiased sawtooth waveform generator
techno~ Signal-driven sequencer
tri~ Antialiased triangle waveform generator
Tutorial 3 Fundamentals: Wavetable oscillator

Resonant bandpass filter reson~

348

Input

signal In left inlet: Any signal to be filtered.

In left-middle inlet: Sets the bandpass filter gain. This value should
generally be less than 1.

In right-middle inlet: Sets the bandpass filter center frequency in hertz.

In right inlet: Sets the bandpass filter “Q”—roughly, the sharpness of the
filter— where Q is defined by the center frequency divided by the filter
bandwidth. Useful Q values are typically between 0.01 and 500.

int or float An int or float can be sent in the three right inlets to change the filter gain,
center frequency, and Q. If a signal is connected one of the inlets, a number
received in that inlet is ignored.

list The first number sets the filter gain. The second number sets the filter
center frequency. The third number sets the filter Q. If any of the inlets
corresponding to these parameters have signals connected, the
corresponding value in the list is ignored.

clear Clears the filter’s memory. Since reson~ is a recursive filter, this message
may be necessary to recover from blowups.

Arguments

int or float Optional. Numbers set the initial gain, center frequency, and Q. The
default values are 0 for gain, 0 for center frequency, and 0.01 for Q.

Output

signal The filtered input signal. The equation of the filter is

yn = gain * (xn - r * xn-2) + c1 * yn-1 + c2 * yn-2

where r, c1, and c2 are parameters calculated from the center frequency
and Q.

Resonant bandpass filter reson~

349

Examples

Control gain, center frequency, and Q of a bandpass filter to alter a rich signal

See Also

biquad~ Two-pole, two-zero filter
comb~ Comb filter

Host ReWire devices rewire~

350

The ReWire system connects audio applications together. It allows a program that
generates audio (a client) to feed it into a program that plays audio (a mixer).

The rewire~ object requires a properly installed ReWire client to be installed and available.
The rewire~ object allows MSP to be a ReWire mixer; there can only be one mixer active
at any one time.

You can use several rewire~ objects. Each object is associated with one ReWire client.

rewire~ is intended to be used with other ReWire-compatible software synthesizers. For a
list of compatible applications, visit the Propellerheads web site at
http://www.propellerheads.se.

ReWire is a trademark of Propellerhead Software AS.

Input

bang In left inlet: If a ReWire device has been loaded, bang causes a list of its
output channel names to be sent out the second-from-right outlet.

int In left inlet: 1 starts the ReWire transport, 0 stops it. No sound can occur
without the transport being started.

play In left inlet: Starts the ReWire transport.

stop In left inlet: Stops the ReWire transport.

openpanel In left inlet: If the current device has a user interface panel, the word
openpanel will open it.

closepanel In left inlet: Closes the current device's user interface panel if it is open.

device In left inlet: The word device, followed by a number, switches to the ReWire
device associated with the number index. The index is obtained as the order
in which device names appear in a pop-up menu object connected to the
second-to-right outlet.

any symbol In left inlet: The symbol is interpreted as the name of a ReWire device. If
the name is valid, rewire~ attempts to switch to the device.

tempo In left inlet: The word tempo, followed by a number, sets the tempo to that
number in beats per minute. ReWire handles integer or floating-point

Host ReWire devices rewire~

351

valude for tempos, and tempo is updated on the next call to the client to
return audio samples.

position In left inlet: The word position, followed by a number, sets the current play
position (in samples).

loop In left inlet: The word loop, followed by three numbers, sets the current
loop position and mode. The first number sets the loop start position in
samples. The second number sets the loop end position in samples. If the
third number is 1, looping is turned on. If the third number is 0, looping is
turned off. However, note that ReWire clients may ignore looping if they
do not produce transport- or time-based output. For example, a software
synthesizer that only responds to MIDI note commands would probably
not be affected by looping.

midi In left inlet: The word midi, followed by four or five numbers, sends a MIDI
event to a ReWire device. The first number is a time stamp value and is
currently ignored (in other words, the event is sent out immediately). The
second number is the MIDI bus index. ReWire 2 has 256 MIDI busses,
indexed from 0 to 255. The third number is the MIDI message status byte,
and the fourth and fifth numbers are the MIDI message data bytes.

map The word map, followed by two numbers, maps a ReWire device's output
channel to an outlet of the rewire~ object. ReWire channels start at 1 with
a maximum of 256. rewire~ object outlets are specified starting at 1 for the
left outlet, or 0 to turn the ReWire channel off. For example, map 3 2 causes
the ReWire device's audio output channel 3 to be mapped to the second-
from-left outlet of the rewire~ object. You can find out the names of the
ReWire audio output channels with the bang message after the rewire~
object has a connection to a ReWire device. By default, audio outlets map
to the first channels of the ReWire device; in other words, the leftmost
signal outlet outputs the first channel of the device.

Arguments

symbol Optional. If present, a ReWire device name can be specified. rewire~ will
attempt to open the device when the object is initialized.

int Optional. Specifies the number of audio outputs the rewire~ object will
have. If no argument is present, one audio outlet is created. The maximum
number of outlets is 256.

Host ReWire devices rewire~

352

Output

signal Out audio outlets (starting at left): The audio signal output from the
ReWire device is sent out the rewire~ object's outlets. By default, the
leftmost outlet outputs the first channel of the device, but this mapping
can be changed with the map message.

symbol Out fourth-from-right outlet: Messages indicating the transport state of
the ReWire device. The position message with an int argument reports the
transport position in 15360 PPQ. The play and stop messages report when
the transport is started and stopped.

MIDI Out third-from-right outlet: MIDI events received from the ReWire device
are sent out this outlet preceded by the word midi. The first argument is
always 0 (it is the time stamp), the second argument is the ReWire MIDI
bus index, the third argument is the MIDI status byte, and the fourth and
(optional) fifth arguments are the MIDI data bytes.

symbol Out second-from-right outlet: A list of the currently available ReWire
devices in response to the bang message.

symbol Out right outlet: A list of the currently available device output names (in
channel order) for the currently used ReWire device.

Examples

rewire~ allows MIDI communication to and signal output from ReWire compatible devices

Host ReWire devices rewire~

353

See Also

vst~ Host VST plug-ins

Round an input
signal value round~

354

Input

signal In left inlet: A signal whose values will be roun plug-in ded.

In right inlet: A signal whose value is used for rounding. Signal values
received in the left inlet will be rounded to either the absolute nearest
integer multiple or the nearest integer multiple between the value received
in this inlet or 0 (See the nearest message for more information).

nearest In left inlet: The word nearest, followed by a non-zero value, will cause the
round~ object to round its input to the nearest absolute integer multiple of
the value received in the right inlet. The default is on. nearest 0 will cause the
round~ object to round the input signal to the nearest integer multiple
between the value received in the right inlet and zero (for positive numbers
this will round down).

Arguments

int or float Optional. Sets the value the input signal will be rounded to.

Output

signal The rounded input signal.

Examples

round~ takes floating-point signals and rounds them to a specific increment

See Also

rampsmooth~ Smooth an incoming signal

Round an input
signal value round~

355

slide~ Filter a signal logarithmically
trunc~ Truncate fractional signal values

Sample
and hold sah~

356

Input

signal In left inlet: A signal to be sampled. When the control signal (in the right
inlet) goes from being at or below the current trigger value to being above
the trigger value, the signal in the left inlet is sampled and its value is sent
out as a constant signal value.

In right inlet: The control signal. In order to cause a change in the output
of sah~, the control signal must go from being at or below the trigger value
to above the trigger value. When this transition occurs the signal in the left
inlet is sampled and becomes the new output signal value.

int or float In left inlet: Sets the trigger value.

Arguments

int or float Optional. Sets the initial trigger value. The default is 0.

Output

signal When the control signal received in the right inlet goes from being at or
below the trigger value to being above the trigger value, the output signal
changes to the current value of the signal received in the left inlet. This
signal value is sent out until the next time the trigger value is exceeded by
the control signal.

Examples

Hold the signal value constant until the next trigger

Sample
and hold sah~

357

See Also

phasor~ Sawtooth wave generator

Convert samples
to milliseconds sampstoms~

358

Input

float or int A value representing a number of samples received in the inlet is converted
to milliseconds at the current sampling rate and sent out the object’s right
outlet. The input may contain a fractional number of samples. For
example, at 44.1 kHz sampling rate, 322.45 samples is 7.31 milliseconds.
(A float or int input triggers output even when audio is off.)

signal Values in the signal represent a number of samples, and are converted to
milliseconds at the current sampling rate and output as a signal out the left
outlet. The input may contain a fractional number of samples.

Arguments

None.

Output

signal Out left outlet: A signal consisting of the number of milliseconds
corresponding to values representing a number of samples in the input
signal.

float Out right outlet: A number of milliseconds corresponding to a number of
samples received in the inlet.

Examples

Some objects refer to time in samples, some in milliseconds

See Also

dspstate~ Report current DSP settings

Convert samples
to milliseconds sampstoms~

359

mstosamps~ Convert milliseconds to samples

Antialiased
sawtooth oscillator saw~

360

Input

signal In left inlet: Sets the frequency of the oscillator.

In right inlet: (optional) A sync signal. When the control signal crosses
from below 0.5 to above 0.5, the oscillator resets itself. A phasor~ object
works well for this purpose. The classic use is to set this control signal to
your fundamental frequency and “sweep” the left frequency input in a
range somewhere several octaves higher than the fundamental..

int or float In left inlet: Sets the frequency of the oscillator.

Arguments

int or float Optional. Sets the initial frequency of the oscillator. The default is 0.

Output

signal An antialiased sawtooth waveform. A ideal, straight-line sawtooth wave
generated in a computer contains alias frequencies that can sound
irritating. saw~ produces a nice, analog-esque output waveform.

Examples

Spectral comparison of saw~ and phasor~

Antialiased
sawtooth oscillator saw~

361

See Also

cycle~ Table lookup oscillator
phasor~ Sawtooth wave generator
rect~ Antialiased rectangular (pulse) waveform generator
saw~ Antialiased sawtooth waveform generator
techno~ Signal-driven sequencer
tri~ Antialiased triangle waveform generator
Tutorial 3 Fundamentals: Wavetable oscillator

Signal oscilloscope scope~

362

Input

signal In left inlet: The input signal is displayed on the X axis of the oscilloscope.

In right inlet: The input signal is displayed on the Y axis of the
oscilloscope.

If signal objects are connected to both the left and right inlets, scope~
operates in X-Y mode, plotting points whose horizontal position
corresponds to the value of the signal coming into the left (X) inlet and
whose vertical position corresponds to the value of the signal coming into
the right (Y) inlet. If the two signals are identical and in phase, a straight
line increasing from left to right will be seen. If the two signals are
identical and 180 degrees out of phase, a straight line decreasing from left
to right will be seen. Other combinations may produce circles, ellipses, and
Lissajous figures.

int In left inlet: Sets the number of samples collected for each value in the
display buffer. Smaller numbers expand the image but make it scroll by on
the screen faster. The minimum value is 2, the maximum is 8092, and the
default initial value is 256. In X or Y mode, the most maximum or
minimum value seen within this period is used. In X-Y mode, a
representative sample from this period is used.

In right inlet: Sets the size of the display buffer. This controls the rate at
which scope~ redisplays new information as well as the scaling of that
information. If the buffer size is larger, the signal image will stay on the
screen longer and be visually compressed. If the buffer size is smaller, the
signal image will stay on the screen a shorter time before it is refreshed and
will be visually expanded.

It might appear that the samples per display buffer element and the display
buffer size controls do the same thing but they have subtly different
effects. You may need to experiment with both controls to find the
optimum display parameters for your application.

brgb The word brgb, followed by three numbers between 0 and 255, sets the
RGB values for the background color of the scope~ object’s display. The
default value is set by brgb 135 135 135.

bufsize The word bufsize, followed by a number, changes the number of samples
stored in the buffer used by the scope~ object.

Signal oscilloscope scope~

363

drawstyle The word drawstyle, followed by a non-zero number, toggles an alternate
drawing style for the scope~ object which may make some waveforms more
easily visible. The default is off (drawstyle 0).

frgb The word frgb, followed by three numbers between 0 and 255, sets the
RGB values for the color of the scope~ object’s waveform display. The
default value is set by frgb 102 255 51.

range The word range, followed by two numbers (float or int) sets the minimum
and maximum displayed signal amplitudes. The default values are –1 to 1.

delay The word delay, followed by a number, sets the number of milliseconds of
delay before scope~ begins collecting values. After a non-zero delay period,
scope~ enters a state in which it may wait for a trigger condition to be
satisfied in the input signal based on the setting of the trigger state (set
with the trigger message) and trigger level (set with the triglevel message). By
default, the delay is 0.

trigger Sets the trigger mode. After a non-zero delay period (set with the delay
message), scope~ begins to wait for a particular feature in the input signal
before it begins collecting samples. trigger 1 sets an upward trigger in which
the signal must go from being below the trigger level (default 0) to being
equal to it or above it. trigger 2 sets a downward trigger in which the signal
must go from being above the trigger level to being equal to it or below it.
The default trigger mode is 0, which does not wait after a non-zero delay
period before collecting samples again. This is sometimes referred to as a
“line” trigger mode.

triglevel The word triglevel, followed by a number, sets the trigger level, used by
trigger modes 1 and 2. The default trigger level is 0. If you are displaying a
waveform, making slight changes to the trigger level will move the
waveform to the left or right inside the scope~. It is possible to set the
trigger level so that scope~ will never change the display.

(mouse) When you click on a scope~, its display freezes for as long as you hold the
mouse button down.

Inspector

The behavior of a scope~ object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any scope~ object

Signal oscilloscope scope~

364

displays the scope~ Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The scope~ Inspector lets you specify the following attributes:

Buffers per Pixel sets the number of buffers per pixel which the scope~
object displays. The default is 25. Buffer Size specifies the number of
samples stored in the buffer used by the scope~ object. The default is 128.
The Range number boxes set the minimum and maximum values for the
scope~ display. The default Min. value is –1.0, and the default Max. value is
1.0. The Delay value sets the number of milliseconds of delay before scope~
begins collecting values. The Trigger Mode checkboxes let you specify Line
Up (default) or Line Down modes (see the trigger message, above). Trigger
Level sets the trigger level used by modes 1 and two of the scope~ display
(see the triglevel message in Input for more information) The default trigger
level is 0.

The Colors pull-down menu lets you use a swatch color picker or RGB
values to specify the colors used for phosphor and background of the scope~
display. display by the scope~ object. Phosphor sets the color the scope~
object uses for its display. The default phosphor color is 102 255 51.
Background sets the scope~ object’s background color. The default value is
135 135 135.

The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

None.

Signal oscilloscope scope~

365

Examples

Display a signal, or plot two signals in X-Y mode

See Also

meter~ Visual peak level indicator
Tutorial 24 Analysis: Oscilloscope

Assign one of several
inputs to an outlet selector~

366

Input

int or float In left inlet: If a signal is not connected to the left inlet, an int or float
determines which input signal in the other inlets will be passed through to
the outlet. If the value is 0 or negative, all inputs are shut off and a zero
signal is sent out. If it is 1 but less than 2, the signal coming in the first
inlet to the right of the leftmost inlet is passed to the outlet. If the number
is 2 but less than 3, the signal coming into the next inlet to the right is
used, and so on.

signal In left inlet: If a signal is connected to the left inlet, selector~ operates in a
mode that uses signal values to determine which of its input signals is to be
passed to its outlet. If the signal coming in the left inlet is 0 or negative,
the output is shut off and a zero signal is sent out. If it is 1 but less than 2,
the signal coming in the first inlet to the right of the leftmost inlet is
passed to the outlet. If the signal is 2 but less than 3, the signal coming
into the next inlet to the right is used, and so on.

In other inlets: Any signal, to be passed through to the selector~ object’s
outlet depending on the value of the most recently received int or float in
the left inlet, or the signal coming into the left inlet. The first signal inlet
to the right of the leftmost inlet is considered input 1, the next to the right
input 2, and so on.

If the signal network connected to one or more of the selector~ signal
inlets contains a begin~ object, and a signal is not connected to the left
inlet of the selector~, all processing between the begin~ outlet and the
selector~ inlet is turned off when the input signal is not being passed to the
selector~ outlet.

Arguments

int Optional. The first argument specifies the number of input signals. The
default is 1. The second argument specifies which signal inlet is initially
open for its input to be passed through to the outlet. The default is 0, where
all signals are shut off and a zero signal is sent out. If a signal is connected
to the left inlet, the second argument is ignored.

Assign one of several
inputs to an outlet selector~

367

Output

signal The output is the signal coming in the “open” inlet, as specified by a
number or signal in the left inlet. The output is a zero signal if all signal
inlets are shut off.

Examples

Allow only one of several signals to pass; optionally turn off unneeded signal objects

See Also

gate~ Route a signal to one of several outlets
begin~ Define a switchable part of a signal network
Tutorial 5 Fundamentals: Turning signals on & off

Transmit signals
without patch cords send~

368

Input

signal The send~ object sends its input signal to all receive~ objects that share its
name. The send~ object need not be in the same patch as the corresponding
receive~ object(s).

clear The clear message clears all of the receive~ buffers associated with the send~
object. This message is only used with patchers which are being muted
inside a subpatch loaded by the poly~ object.

set The word set, followed by a symbol, changes the name of the send~ so that it
connects to different receive~ objects that have the symbol as a name. (If no
receive~ objects with the same name exist, send~ does nothing.)

Arguments

symbol Obligatory. Sets the name of the send~ object.

Output

None.

Examples

Signal coming into send~ comes out any receive~ object with the same name

See Also

receive~ Receive signals without patch cords
Tutorial 4 Fundamentals: Routing signals

Signal-driven
event sequencer seq~

369

Input

signal An input signal whose output is between 0. and 1.0 (usually the output of a
phasor~) is used to drive the event sequencer.

any message The seq~ object is used to record and play back messages. All events
received in the inlet are stored according to the current value of the input
signal. Any message can be sequenced except for commands to the seq~
object itself. The example shows a simple way to work around this
limitation.

Note: seq~ can be used to sequence MIDI data if the MIDI input stream is
converted into lists of MIDI events. This conversion is necessary to avoid
outputting a corrupted MIDI stream which would occur if only the raw int
messages of a MIDI stream were sequenced individually and the seq~
object were not doing a simple forward linear playback.

bang Causes information about the seq~ object’s current sequence number,
mode of operation (record, overdub, play) and total number of current
events to be printed in the Max window.

add The word add, followed by an int, a float and a message, inserts a Max
event specified by the message at the time specified by the float for the
sequence number specified by the int. (e.g., add 2 0.5 honk will insert the
message honk to be played at the halfway point of sequence 2.)

clear Erases all current sequences.

dump Causes the contents of the current stored event sequence to be sent out the
right outlet. The word dump, followed by a number, outputs only the
sequence designated by the number.

erase Synonym for clear – erases all current sequences.

overdub The word overdub, followed by 1, causes seq~ to begin Max event recording
of the current sequence (set by the seqnum message) in “overdub” mode.
Recording begins at the current point of the loop and wraps around at the
point where the input signal reaches 1, continuing to record as the signal
passes its original value. The message overdub 0 turns off overdub mode.

play The word play, followed by 1, causes seq~ to begin Max event playback of
the current sequence (set by the seqnum message) at the point of the loop

Signal-driven
event sequencer seq~

370

specified by the current value of the signal input. play 0 turns off playback.
By default, playback is off.

read Reads a text file containing Max event sequences created using the seq~
object’s write message into the memory of the seq~ object. If no symbol
argument appears after the word read, a standard open file dialog is opened
showing available text files. The word read, followed by a symbol, reads the
file whose filename corresponds to the symbol into the seq~ object’s
memory without opening the dialog box.

record The word record, followed by 1, causes seq~ to begin recording events into
the current sequence (set by the seqnum message) at the point of the loop
specified by the current value of the signal input. record 0 turns off
playback. By default, recording is off.

seqnum The word seqnum, followed by a number or symbol, sets the current Max
event sequence being recorded or played back.

write Saves the contents of all current Max event sequences into a text file. A
standard file dialog is opened for naming the file. The word write, followed
by a symbol, saves the file, using the symbol as the filename, in the same
folder as the patch containing the seq~ object. If the patch has not yet been
saved, the seq~ file is saved in the same folder as the Max application.

Arguments

None.

Output

any message Out left outlet: When playback is enabled with the play 1 message, the seq~
object outputs all events recorded at the time specified by the input signal.

list Out right outlet: The dump message will cause the seq~ object to output
the contents of a specified sequence to be output in the form of a list
consisting of an int which specifies the sequence number, a float which
specifies the signal value associated with that point in time, and the int,
float, symbol or list to be output at that time.

Signal-driven
event sequencer seq~

371

Examples

See Also

phasor~ Sawtooth wave generator
techno~ Signal-driven sequencer

Report audio
file information sfinfo~

372

Input

open The word open, followed by a name of an audio file, opens the file if it
exists in Max’s search path. Without a filename, open brings up a standard
open file dialog allowing you to choose a file. After the file is opened,
sfinfo~ interrogates the file and reports the number of channels, sample
size, sample rate, file length in milliseconds, sample type, and filename out
its outlets.

bang If a file has already been opened, either with the open message or specified
by an argument to sfinfo~, bang reports the number of channels, sample
size, sample rate, and length in milliseconds out the sfinfo~ object’s outlets.

getnamed In left inlet: The word getnamed, followed by a symbol which specifies the
name of an sfplay~ object, interrogates the named sfplay~ object and
reports the number of channels, sample size, sample rate, file length in
milliseconds, sample type, and filename out its outlets.

Arguments

symbol Optional. Names a file that sfinfo~ will report about when it receives a
subsequent bang message. The file must exist in the Max search path.

Output

int Out left outlet: The number of channels in the audio file.

Out 2nd outlet: The audio file’s sample size in bits (typically 16).

float Out 3rd outlet: The audio file’s sampling rate.

Out 4th outlet: The duration of the audio file in milliseconds.

symbol Out 5th outlet: the sample type of the audio file.

Report audio
file information sfinfo~

373

The following types of sample data are supported:

int8 8-bit integer

int16 16-bit integer

int24 24-bit integer

int32 32-bit integer

float32 32-bit floating-point

float64 64-bit floating-point

mulaw 8-bit µ-law encoding

alaw 8-bit a-law encoding

Out 6th outlet: The filename of the audio file

Examples

Report information about a specific audio file

See Also

info~ Report information about a sample
sflist~ Store audio file cues
sfplay~ Play audio file from disk
Tutorial 16 Sampling: Record and play audio files

Store audio
file cues sflist~

374

Input

open The word open, followed by the name of an AIFF, WAV, NeXT/Sun or
Sound Designer II (Macintosh only) audio file, opens the file if it is located
in Max’s search path. Without a filename, open brings up a standard open
file dialog allowing you to choose a file. When a file is opened, its
beginning is read into memory, and until another file is opened, playing
from the beginning the file is defined as cue 1. Subsequent cues can be
defined referring to this file using the preload message without a filename
argument. When the open message is received, the previous current file, if
any, remains open and can be referred to by name when defining a cue
with the preload message. If any cues were defined that used the previous
current file, they are still valid even if the file is no longer current.

clear The word clear with no arguments clears all defined cues. After a clear message
is received, only the number 1 will play anything (assuming there’s an
open file). The word clear followed by one or more cue numbers removes
them from the sflist~ object’s cue list.

embed The message embed, followed by any non-zero integer, causes sflist~ to save
all of its defined cues and the name of the current open file when the
patcher file is saved. The message embed 0 keeps sflist~ from saving this
information when the patcher is saved. By default, the current file name
and the cue information is not saved in sflist~ when the patcher is saved. If
an sflist~ object is saved with stored cues, they will all be preloaded when
the patcher containing the object is loaded.

fclose The word fclose, followed by the name of an open file, closes the file and
removes all cues associated with it. The word fclose by itself closes the
current file.

openraw The openraw message functions exactly like open, but allows you to open any
type of file for playback and make it the current file. The openraw message
assumes that the file being opened is a 16-bit stereo file sampled at a rate of
44100 Hz, and assumes that there is no header information to ignore (i.e.,
an offset of 0). The file types can be explicitly specified using the samptype,
offset, srate, and srchans messages.

preload Defines a cue—an integer greater than or equal to 2—to refer to a specific
region of a file. When that cue number is subsequently received by an
sfplay~ object that is set to use cues from the sflist~ object, the specified

Store audio
file cues sflist~

375

region of the file is played by sfplay~. Cue number 1 is always the
beginning of the current file—the file last opened with the open
message.—and cannot be modified with the preload message.

There are a number of forms for the preload message. The word preload is
followed by an obligatory cue number between 2 and 32767. If the cue
number is followed by a filename—a file that is currently open or one that
is in Max’s search path— that cue number will henceforth play the
specified file. Note that a file need not have been explicitly opened with
the open message in order to be used in a cue. If no filename is specified,
the currently open file is used.

After the optional filename, an optional start time in milliseconds can be
specified. If no start time is specified, the beginning of the file is used as
the cue start point. After the start time, an end time in milliseconds can be
specified. If no end time is specified, or the end time is 0, the cue will play
to the end of the file. If the end time is less than the start time, the cue is
defined but will not play. Eventually it may be possible to define cues that
play in reverse.

After the start and/or end time arguments, a optional directional buffer
flag is used to enable reverse playback of stored cues. Setting this flag to 1
enables reverse cue playback. The default setting is 0 (bidirectional
buffering off).

A final optional argument is used to set the playback speed. A float value
sets the playback speed for an sfplay~ object relative to the object’s global
playback speed—set by the speed message. The default value is 1.

Each cue that is defined requires approximately 40K of memory per sfplay~
channel at the default buffer size (40320), with bidirectional buffering
turned off. With bidirectional buffering turned on, the amount of
memory per cue is doubled.

print Prints a list of all the currently defined cues.

samptype The word samptype, followed by a symbol, specifies the sample type to use
when interpreting the audio file’s sample data (thus overriding the audio
file's actual sample type). This is sometimes called “header munging.”
When reading files in response to the openraw message, the assumed sample
type is 16-bit integer. Modifications using samptype make no changes to the
file on disk.

Store audio
file cues sflist~

376

The following types of sample data are supported:

int8 8-bit integer

int16 16-bit integer

int24 24-bit integer

int32 32-bit integer

float32 32-bit floating-point

float64 64-bit floating-point

mulaw 8-bit µ-law encoding

alaw 8-bit a-law encoding

srcchans The word srcchans, followed by a number, specifies the number of channels
in which to interpret the audio file's sample data (thus overriding the audio
file's actual number of channels). This is sometimes called “header
munging.” When reading files in response to the openraw message, the
assumed number of channels is 2. Modifications using srcchans make no
changes to the file on disk.

Arguments

symbol Obligatory. Names the sflist~. sfplay~ objects use this name to refer to cues
stored inside the object.

int Optional. Sets the buffer size used to preload audio files. The default and
minimum is 16384. Preloaded buffers are 4 times the buffer size per
channel of the audio file.

Output

None.

Store audio
file cues sflist~

377

Examples

Store a global list of cues that can be used by one or more sfplay~ objects.

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
play~ Position-based sample playback
sfinfo~ Report audio file information
sfplay~ Play audio file from disk
sfrecord~ Record to audio file on disk
Tutorial 16 Sampling: Record and play audio files

Play audio file
from disk sfplay~

378

Input

float In right inlet: Defines the playback rate of an audio file. A value of 1.0
plays the audio file at normal speed. A playback rate of –1 plays the audio
file backwards at normal speed. A playback rate of 2 plays the audio file at
twice the normal speed. A playback rate of .5 plays the audio file at half the
normal speed.

signal In left inlet: An input signal may be used for the sample-accurate
triggering of prestored cues. When a signal value is received in the left
inlet, the integer portion of the signal value is monitored. When the
integer portion of the input signal changes to a value equal to the index of
a prestored cue, that cue is triggered. Negative values are ignored.

In right inlet: The playback rate of an audio file can also be defined by a
signal, allowing for playback speed change over time for vibrato or other
types of speed effects. The same conventions with respect to number value
and sign and playback rate apply as for float values.

int In left inlet: If a file has been opened with the open message, 1 begins
playback (of the most recently opened file), and 0 stops playback. Numbers
greater than 1 trigger cues that have been defined with the preload message,
or that were defined based on the saved state of the sfplay~ object. When
the file is played, the audio data in the file is sent out the signal outlets
according to the number of channels the object has. When the cue is
completed or sfplay~ is stopped with a 0, a bang is sent out the right outlet.
If the object is currently assigned to an sflist~ object (using the set message
or with a typed-in argument), an int will trigger cues stored in the sflist~
object rather than inside the sfplay~. To reset sfplay~ to use its own cues,
send it the set message with no arguments.

anything In left inlet: If the name of an sflist~ object is sent to sfplay~, followed by a
number, the numbered cue from the sflist~ is played if it exists.

clear In left inlet: The word clear with no arguments clears all defined cues. After
a clear message is received, only the number 1 will play anything (assuming
there’s an open file). The word clear followed by one or more cue numbers
removes them from the sfplay~ object’s cue list.

embed In left inlet: The message embed, followed by any non-zero integer, causes
sfplay~ to save all of its defined cues and the name of the current open file

Play audio file
from disk sfplay~

379

when the patcher file is saved. The message embed 0 keeps sfplay~ from
saving this information when the patcher is saved. By default, the current
file name and the cue information is not saved in sfplay~ when the patcher
is saved. If an sfplay~ object is saved with stored cues, they will all be
preloaded when the patcher containing the object is loaded.

fclose In left inlet: The word fclose, followed by the name of an open file, closes
the file and removes all cues associated with it. The word fclose by itself
closes the current file.

list In left inlet: Gives a set of cues for sfplay~ to play, one after the other. The
maximum number of cues is in a list is 128. Cue numbers (set using the
preload message) can be any integer greater than or equal to 2.If a cue
number in a list has not been defined, it is skipped and the next cue, if
any, is tried. If the object is currently assigned to an sflist~ object, a list
uses cues stored in the sflist~ object. Otherwise, cues stored inside the
sfplay~ object are used.

loop In left inlet: The word loop, followed by 1, turns on looping. loop 0 turns off
looping. By default, looping is off.

modout In left inlet: The word modout, followed by 1, turns on modulo output. If
the number of channels in a audio file is less than the number of outputs
for the sfplay~ object, the sfplay~ object will reduplicate the audio file’s
channels across all of sfplay~ object's outputs (rather than outputting zero)
if modulo output is enabled. For example, a mono audio file loaded into an
sfplay~ object with two outputs will be played with the mono channel sent
out both outputs of the object if modulo output is enabled. Similarly a
stereo audio file will be played on an sfplay~ object with four outlets with
the left channel played on outputs 1 and 3, while the right will be played
on outputs 2 and 4. The message modout 0 disables this feature.

name The word name, followed by a symbol, changes the name by which other
objects such as sflnfo~ can refer to the sfplay ~object. Objects that were
referring to the sfplay~ under its old name lose their connection to it.
Every sfplay~ object should be given a unique name; if you give an sfplay~
object a name that already belongs to another sfplay~ object, that name will
no longer be associated with the sfplay~ object that first had it.

offset In left inlet: The word offset, followed by a number, specifies the sample
start offset in bytes. The default value is 0. This value useful for aligning
samples and avoiding playback of header information.

Play audio file
from disk sfplay~

380

open In left inlet: followed by the name of an AIFF, WAV, NeXT/Sun, raw
format, or Sound Designer II (Macintosh only) audio file or CD-audio
track, opens the file for playback and makes it the current file. The word
open, followed by a filename, opens the file if it exists in Max’s search path.
Without a filename, open brings up a standard open file dialog allowing
you to choose a file. When a file is opened, its beginning is read into
memory, and until another file is opened, you can play the file from the
beginning by sending sfplay~ the message 1. When the open message is
received, the previous current file, if any, remains open and can be referred
to by name when defining a cue with the preload message. If any cues were
defined that used the previous current file, they are still valid even if the
file is no longer current.

openraw In left inlet: The openraw message functions exactly like open, but allows you
to open any type of file for playback and make it the current file. The
openraw message assumes that the file being opened is a 16-bit stereo file
sampled at a rate of 44100 Hz, and assumes that there is no header
information to ignore (i.e., an offset of 0). The file types can be explicitly
specified using the samptype, offset, srate, and srchans messages.

pause In left inlet: The pause message causes the audio file playback to pause at its
current playback position. Playback can be restarted with the resume
message.

preload In left inlet: Defines a cue — an integer greater than or equal to 2—to
refer to a specific region of a file. When that cue number is subsequently
received, sfplay~ plays that region of that file. Cue number 1 is always the
beginning of the current file — the file last opened with the open message
— and cannot be modified with the preload message.

There are a number of forms for the preload message. The word preload is
followed by an obligatory cue number between 2 and 32767. If the cue
number is followed by a filename — a file that is currently open or one
that is in Max’s search path — that cue number will henceforth play the
specified file. Note that a file need not have been explicitly opened with
the open message in order to be used in a cue. If no filename is specified,
the currently open file is used.

After the optional filename, an optional start time in milliseconds can be
specified. If no start time is specified, the beginning of the file is used as
the cue start point. After the start time, an end time in milliseconds can be
specified. If no end time is specified, or the end time is 0, the cue will play

Play audio file
from disk sfplay~

381

to the end of the file. If the end time is less than the start time, the cue is
defined but will not play. Eventually it may be possible to define cues that
play in reverse.

After the start and/or end time arguments, a optional directional buffer
flag is used to enable reverse playback of stored cues. Setting this flag to 1
enables reverse cue playback. The default setting is 0 (bidirectional
buffering off).

A final optional argument is used to set the playback speed. A float value
sets the sfplay~ object’s playback speed relative to the object’s global
playback speed — set set by either the speed message or the sfplay~ object’s
right inlet. The default value is 1.

Each cue that is defined requires approximately 40K of memory per sfplay~
channel at the default buffer size (40320), with bidirectional buffering
turned off. With bidirectional buffering turned on, the amount of
memory per cue is doubled.

The preload message is always deferred to low priority. The pause, resume, and
int messages are not. If you have problems with these messages arriving
before you want them to in overdrive mode(i.e., before you've preloaded
the most recent cue), use the defer object.

print In left inlet: Prints information about the state of the object, plus a list of
all the currently defined cues.

resume In left inlet: If playback was paused, playback resumes from the paused
point in the file.

samptype In left inlet: The word samptype, followed by a symbol, specifies the sample
type to use when interpreting the audio file’s sample data (thus overriding
the audio file's actual sample type). This is sometimes called “header
munging.” When reading files in response to the openraw message, the
assumed sample type is 16-bit integer. Modifications using samptype make
no changes to the file on disk.

The following types of sample data are supported:

int8 8-bit integer

int16 16-bit integer

int24 24-bit integer

Play audio file
from disk sfplay~

382

int32 32-bit integer

float32 32-bit floating-point

float64 64-bit floating-point

mulaw 8-bit µ-law encoding

alaw 8-bit a-law encoding

seek In left inlet: The word seek, followed by a start time in milliseconds, moves
to the specified position in the current file and begins playing. After the
start time, an optional end time can be specified, which will set a point for
playback to stop. The seek message is intended to allow you to preview and
adjust the start and end points of a cue.

NOTE: The seek message is always deferred to low priority. If you have
problems with these messages arriving before you want them to in
overdrive mode(i.e. before you've finished seeking to a new location), then
use the defer object.

set In left inlet: The message set, followed by a name of an sflist~ object, will
cause sfplay~ to play cues stored in the sflist~ when it receives an int or list.
The message set with no arguments resets sfplay~ to use its own internally
defined cues when receiving an int or list.

speed In left inlet: The word speed, followed by a number, sets an overall
multiplier on the playback rate of all cues played by the object. A value of
1.0 (the default) plays all cues at normal speed. A playback rate of -1 plays
all cues backward at normal speed. A playback rate of 2 plays the cues at
twice their defined speed. A playback rate of 0.5 plays cues at half their
defined speed. For example, if a cue has a playback rate of 2, and the speed
is set to 3, the cue will play back at 6 times the normal speed.

srate In left inlet: The word srate, followed by a number, specifies the sampling
rate (Hertz) at which to interpret the audio file's sample data (thus
overriding the audio file's actual sampling rate). This is sometimes called
“header munging.” When reading files in response to the openraw
message, the assumed sampling rate is 44,100 Hz. Modifications using srate
make no changes to the file on disk.

srcchans In left inlet: The word srcchans, followed by a number, specifies the number
of channels in which to interpret the audio file's sample data (thus
overriding the audio file's actual number of channels). This is sometimes
called “header munging.” When reading files in response to the openraw

Play audio file
from disk sfplay~

383

message, the assumed number of channels is 2. Modifications using srcchans
make no changes to the file on disk.

Arguments

symbol Optional. If the first argument is a symbol, it names an sflist~ that the
sfplay~ object will use for playing cues. If no symbol argument is given,
sfplay~ plays its own internally defined cues.

int Optional. Sets the number of output channels, which determines the
number of signal outlets that the sfplay~ object will have. The maximum
number of channels is 28. The default is 1. If the audio file being played
has more output channels than the sfplay~ object, higher-numbered
channels will not be played. If the audio file has fewer channels, the signals
coming from the extra outlets of sfplay~ will be 0.

An additional optional argument can be used to specify the disk buffer size
in samples. If this argument has a value of 0, the default disk buffer size
will be used.

An additional optional argument can be used to create outlets to the
sfplay~ object which display positioning information. Specifying a final
argument of 1 creates a single outlet to the left of the rightmost “bang on
finish or halt” outlet which outputs a signal value which corresponds to the
current playback position in milliseconds.

Like all MSP audio signals, this playback position is a 32-bit single
precision floating-point signal. If greater precision is desired, specifying a
final argument of 2 creates a second outlet which outputs a second 32-bit
single precision floating-point signal containing the single precision
roundoff error. Together these signals provide near double precision
floating-point accuracy. (Note: after several minutes a single precision
floating-point value is no longer sample accurate) Using the two signals
together with objects such as the unsupported Max/ MSP high resolution
signal processing objects like hr.+~, one may perform sample-accurate
calculations based on file position

symbol Optional. If the last argument is a symbol, it specifies a name by which
other objects can refer to the sfplay~ object to access its contents.

Play audio file
from disk sfplay~

384

Output

signal There is one signal outlet for each of the sfplay~ object’s specified output
channels (set by or as an argument to the sfplay~ object) that sends out the
audio data of the corresponding channel of the audio file when a cue
number is received in the inlet. (The left outlet plays channel 1, and so
on.)

If the optional output position argument is specified, there will be one or
two signal outputs following the channel outputs whose signal outputs
display positioning information. If the argument is 1, a single outlet to the
left of the rightmost “bang on finish or halt” outputs a signal containing
the current playback position in milliseconds. Specifying a final argument
of 2 creates a second outlet which outputs a signal containing the playback
position single precision roundoff error in milliseconds (see Arguments for
a more detailed description of the sfplay~ object's position outlets).

bang Out right outlet: When the file is done playing, or when playback is
stopped with a 0 message, a bang is sent out.

Examples

Audio files can be played from the hard disk, without loading the whole file into memory

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
play~ Position-based sample playback
sfinfo~ Report audio file information

Play audio file
from disk sfplay~

385

sflist~ Store audio file cues
sfrecord~ Record to audio file on disk
Tutorial 16 Sampling: Record and play audio files

Record to audio file
on disk sfrecord~

386

Input

open In left inlet: Opens a file for recording. By default, the file type is AIFF,
but sfrecord~ also supports NeXT/Sun, WAV, and Sound Designer II
(Macintosh only) formats. The word open without a filename argument
brings up a standard Save As dialog allowing you to choose a filename. The
optional symbols aiff, au, raw, wave, or sd2 (Macintosh only) specify the file
format (which can also be set in the Save As dialog with a Format pop-up
menu). If open is followed by another symbol, it creates a file in the current
default volume. An existing file with the same name will be overwritten.
The format symbol (e.g., aiff) can follow the optional filename argument.

int In left inlet: If a file has been opened with the open message, a non-zero
value begins recording, and 0 stops recording and closes the file. sfrecord~
requires another open message to record again if a 0 has been sent.

Recording may also stop spontaneously if there is an error, such as running
out of space on your hard disk.

loop In left inlet: The word loop, followed by 1, turns on looping. loop 0 turns off
looping. By default, looping is off.

nchans The word nchans, followed by a number in the range 1-28, sets the number
of channels for the audio file to be recorded. The default is 1.

print Outputs cryptic status information about the progress of the recording.

record In left inlet: If a file has been opened with the open or opensd2 message, the
word record, followed by a time in milliseconds, begins recording for the
specified amount of time. The recording can be stopped before it reaches
the end by sending sfrecord~ a 0 in its left init.

resample The word resample, followed by a float, will upsample or downsample the
file. Sample rates are expressed as floating-point values—1.0 is the current
sampling rate, 0.5 is half the current. 2.0 is twice the current sample rate,
etc.

samptype In left inlet: The word samptype, followed by a symbol, specifies the sample
type to use when recording the audio file (thus overriding the audio file's
actual sample type). This is sometimes called “header munging.” When
reading files in response to the openraw message, the assumed sample type is
16-bit integer.

Record to audio file
on disk sfrecord~

387

The following types of sample data are supported:

int8 8-bit integer

int16 16-bit integer

int24 24-bit integer

int32 32-bit integer

float32 32-bit floating-point

float64 64-bit floating-point

mulaw 8-bit µ-law encoding

alaw 8-bit a-law encoding

signal Each inlet of sfrecord~ accepts a signal which is recorded to a channel of an
audio file when recording is turned on.

Arguments

int Optional. Sets the number of input channels, which determines the
number of inlets that the sfrecord~ object will have. The maximum number
of channels is 28, and the default is 1. The audio file created will have the
same number of channels as this argument. Whether you can actually
record the maximum number of channels is dependent on the speed of
your processor and hard disk.

Output

signal The time, in milliseconds, since recording of the file began. If recordings
has stopped, the signal value will remain at the length of the last recording
until a new recording is started.

Record to audio file
on disk sfrecord~

388

Examples

Save an audio file containing “real world” sound and/or sound created in MSP

See Also

sfplay~ Play audio file from disk
Tutorial 16 Sampling: Record and play audio files

Constant signal
of a number sig~

389

Input

int or float The number is sent out as a constant signal.

signal Any signal input is ignored. You can connect a begin~ object to the sig~
inlet to define the beginning of a switchable signal network.

Arguments

int or float Optional. Sets an initial signal output value.

Output

signal sig~ outputs a constant signal consisting of the value of its argument or the
most recently received int or float in its inlet.

Examples

Provide constant numerical values to a signal network with sig~

See Also

+~ Add signals
begin~ Define a switchable part of a signal network
line~ Linear ramp generator
Tutorial 4 Fundamentals: Routing signals

Signal hyperbolic
sine function sinh~

390

Input

signal Input to a hyperbolic sine function.

Arguments

None.

Output

signal The hyperbolic sine of the input.

Examples

sinh~ can generate interesting oscillator-synced audio control signals

See Also

asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
sinx~ Signal sine function

Signal
sine function sinx~

391

Input

signal Input to a sine function.

Arguments

None.

Output

signal The sine of the input.

Examples

sinx~ can generate cycloids for audio control signals

See Also

asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
sinh~ Signal hyperbolic sine function

Filter a signal
logarithmically slide~

392

Input

signal A signal to be filtered. Whenever a new value is received, slide~ filters the
input signal logarithmically between changes in signal value. using the
formula

y(n) = y(n-1) + ((x(n) - y(n-1))/slide).

A given sample output from slide~ is equal to the last sample's value plus
the difference between the last sample's value and the input divided by the
slide value. Given a slide value of 1, the output will therefore always equal
the input. Given a slide value of 10, the output will only change 1/10th as
quickly as the input. This can be particularly useful for lowpass filtering or
envelope following.

float In middle inlet: Specifies the slide up value to be used when an incoming
value is greater than the current value.

In right inlet: Specifies the slide down value to be used when an incoming
value is less than the current value.

Arguments

float Optional. Specifies the slide up value. The default is 1.

float Optional. A second argument specifies the slide down value. The default is
1.

Output

signal The filtered signal.

Filter a signal
logarithmically slide~

393

Examples

 slide~ performs logarithmic smoothing of an input signal

See Also

rampsmooth~ Smooth an incoming signal

Convert signal values
to numbers snapshot~

394

Input

signal In left inlet: The signal whose values will be sampled and sent out the
outlet.

int or float In left inlet: Any non-zero number turns on the object’s internal clock, 0
turns it off. The internal clock is on initially by default, if a positive clock
interval has been provided.

In right inlet: Sets the interval in milliseconds for the internal clock that
triggers the automatic output of values from the input signal. If the
interval is 0, the clock stops. If it is a positive integer, the interval changes
the rate of data output.

bang Sends out a report of a sample from the most recent signal vector. The
index of the sample within the vector is specified by an offset that can be
set using the offset message.

offset The word offset, followed by a number, sets the number of the sample
within a signal vector that will be reported when snapshot~ sends its output.
The number is constrained between 0 (least recent, the default) and the
current signal vector size minus one (most recent).

Arguments

int Optional. The first argument sets the internal clock interval. If it is 0, the
internal clock is not used, so snapshot~ will only output data when it
receives a bang message. By default, the interval is 0. The second argument
sets the sample number within a signal vector that is reported.

Output

float When snapshot~ receives a bang, or its internal clock is on, sample values
from the input signal are sent out its outlet.

Convert signal values
to numbers snapshot~

395

Examples

See a sample of a signal at a given moment

See Also

capture~ Store a signal to view as text
sig~ Constant signal of a number
Tutorial 23 Analysis: Viewing signal data

Signal spectrogram or sonogram spectroscope~

396

Input

signal In left inlet: The input signal is analyzed and its spectrum is displayed. If
the object is placed inside a pfft~ object’s subpatcher, the left inlet is used
for the real signal coming from the left outlet of a fftin~ object.

In right inlet: If the object is placed inside a pfft~ object’s subpatcher, the
right inlet is used for the imaginary signal coming from the second outlet
of a fftin~ object. When not inside a pfft~ subpatcher, this inlet does
nothing.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB
values for the background color of the spectroscope ~ object’s display. The
default value is set by brgb 240 240 240.

 frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the color of the spectroscope ~ object’s waveform display. The
default value is set by frgb 180 180 180.

 logamp The word logamp, followed by a 1 or 0 will turn the log amplitude display on
or off. By default it is on, but when turned off, the spectrogram’s
amplitudes are shown on a linear scale.

 logfreq The word logfreq, followed by a 1 or 0 will turn the log frequency display on
or off. By default it is off, but when turned on, the spectrogram or
sonogram’s frequencies are shown on a logarithmic scale.

 monochrome The word monochrome, followed by a 1 or 0 will turn the monochrome or
color sonogram display on or off. By default it is on, meaning a two-color
sonogram display. When turned off, the sonogram display uses a series of
five colors.

orientation The word orientation, followed by an integer value, sets the vertical or
horizontal orientation of the spectroscope~ object. By default it is
horizontal, which means frequencies are displayed along the horizontal axis
and amplitudes are displayed along the vertical axis in spectrogram mode,
and time is displayed along the horizontal axis and frequency is displayed
along the vertical axis in sonogram mode. In vertical mode the axes are
reversed.

range The word range, followed by two numbers (float or int) sets the minimum
and maximum displayed amplitudes of the spectrum. The default values are

Signal spectrogram or sonogram spectroscope~

397

0 and 1.2, for the minimum and maximum, respectively. If the word range
is followed by only one number, then it is used as the maximum value, and
the minimum range is set to zero.

sono The word sono, followed by a 1 or 0 is used to turn on or off the sonogram
mode. By default the sonogram display is off (meaning it displays a
spectrogram, instead). N.B.: Although the terms “spectrogram” and
“sonogram” are generally used interchangably to refer to a graph of the
spectrum over time, we are using “spectrogram” in its literal sense – to
refer to the drawing of a spectrum as an amplitude/frequency
representation.

scroll The word scroll, followed by an integer value, is used to switch between the
four sonogram scrolling modes. By default the sonogram scrolling mode is
set to Forward Draw (scroll 0). The scrolling modes are as follows:

scroll 0 Forward Draw - drawing location moves right or do

scroll 1 Reverse Draw - drawing location moves left or up

scroll 2 Forward Scroll – sonogram scrolls right or down

scroll 3 Reverse Scroll - sonogram scrolls left or up

Inspector

The behavior of a spectroscope~ object is displayed and can be edited using
its Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any spectroscope~
object displays the spectroscope~ Inspector in the floating window.
Selecting an object and choosing Get Info… from the Object menu also
displays the Inspector.

The spectroscope~ Inspector lets you specify the following attributes:

Orientation lets you set whether the spectroscope~ object’s horizontal or
vertical axis will be used for the frequency parameter (in spectrogram
mode), or the time parameter (in sonogram mode). The spectroscope~
object’s orientation is horizontal by default.

Interval lets you set the object’s visual update rate in milliseconds. By
default it updates the display every 20 ms.

Signal spectrogram or sonogram spectroscope~

398

Type lets you set whether the spectroscope~ object will display a spectrogram
(a 2 dimensional graph of the sound’s spectrum) or a sonogram (graph of
the spectrum over time, with amplitude displayed as greyscale or color
depth). The spectroscope~ object display a spectrogram by default.

The Frequency display section lets you choose which range of frequencies
will be displayed, and whether or not they will be graphed linearly or
shown on a logarithmic scale.

The Amplitude display section lets you choose which range of amplitudes
will be displayed It also lets you choose a log or linear for amplitude
display, and optionally to view the phase spectrum, instead of the
amplitude spectrum. You can input or view the amplitude range on a
linear or decibel scale in the inspector.

The Sonogram Options section lets you set some options that are specific to
the sonogram display (as opposed to the spectrogram display). The menu
lets you set one of the four scrolling display modes (Forward Draw, Reverse
Draw, Forward Scroll, Reverse Scroll), as well as whether or not the
sonogram will be displayed in monochrome (foreground/background
color) or full color (using a series of five user-defined colors).

The Global Options section lets you select whether or not the object will
have a one-pixel border.

 The Colors section lets you set the display colors

Arguments

None.

Output

None.

Signal spectrogram or sonogram spectroscope~

399

Examples

Display a sonogram in living color

See Also

meter~ Visual peak level indicator
scope~ Signal oscilloscope

Report intervals of
zero to non-zero transitions spike~

400

Input

signal In left inlet: A signal to be analyzed. The spike~ object analyzes an
incoming signal and reports the interval, in milliseconds, between
transitions between zero and non-zero signal values. You can specify a
refractory period, which defines how soon after detecting a transition the
spike~ object will report the next instance.

int or float In right inlet: Sets the refractory period, in milliseconds. When a signal
transition is detected, this value sets the time, in milliseconds, during
which no transitions are reported. After the refractory period has elapsed,
the spike~ object reports the next zero to non-zero signal transition. The
default is 0.

Arguments

int or float Optional. Sets the refractory period (see above).

Output

float The interval, in milliseconds, since the last zero to non-zero signal
transition has occurred (which includes the refractory period, if one is set).

Report intervals of
zero to non-zero transitions spike~

401

Examples

spike~ reports how often a zero to non-zero transition occurs in its input signal

See Also

change~ Report signal direction
edge~ Detect logical signal transitions
zerox~ Detect zero crossings

Square root
of a signal sqrt~

402

Input

signal sqrt~ outputs a signal that is the square root of the input signal. A negative
input has no real solution, so it causes an output of 0.

Arguments

None.

Output

signal The square root of the input signal.

Examples

Output signal is the square root of the input signal

See Also

curve~ Exponential ramp generator
log~ Logarithm of a signal
pow~ Signal power function

Signal capture
and granular oscillator stutter~

403

Input

signal In left inlet: Signals coming into the left inlet are stored in a record buffer,
where they can be copied into a playback buffer and used as a playback
source.

In middle inlet: Accepts a trigger signal, which can be specified to be
positive or negative. When the signal changes polarity in the correct
direction, samples recorded from the left inlet are copied to the playback
buffer.

In right and successive inlets: A phase signal input in the range of 0-1 for
each inlet controls the output speed of the playback buffer for that inlet.
The number of phase inlets in a stutter~ object is set using the fifth
argument; the default is a single inlet. Specifying multiple phase inlets
allows you to specify multiple playback points in the sampled buffer.

bang In left inlet: A bang causes the last buffer of recorded samples to be copied
to the playback buffer. You can use a bang instead of or in conjunction
with the middle inlet trigger signal.

ampvar The word ampvar, followed by a float, specifies a random amplitude variation
in the output signal(s). The default is 0 (no variation).

dropout The word dropout, followed by a float, determines the percentage chance of
a playback signal dropping out (i.e. "gapping’ or not playing). The default
is 0 (no gapping).

int In left inlet: Specifies the size (in samples) of the playback buffer. This can
be any number up to the maximum memory determined by the first
argument to stutter~.

maxsize The word maxsize, followed by a number, sets the maximum buffer size, in
samples.

polarity The word polarity, followed by a 0 or 1, changes the trigger polarity of
stutter~ to negative or positive, respectively.

repeat The word repeat, followed by a float, determines the percentage change of
the record buffer not being copied to the playback buffer so that the
previous playback buffer is repeated. The default is 0 (no repeat).

Signal capture
and granular oscillator stutter~

404

setbuf The word setbuf, followed by arguments for a buffer name, a sample offset,
and a channel, copies the specified samples to the named buffer~ object.
Note: stutter~ always uses its internal buffer as the playback buffer; the
copied samples can be sent to a named buffer~ object for use in some other
way, if desired. The time required to move the specified amount of
memory to the buffer is n/m, there n is the number of samples being
copied and m is the fourth argument to the stutter~ object.

Arguments

int Obligatory. The maximum buffer length, in samples. This determines the
memory size of the record buffer. Parts of the record buffer are copied to
the playback buffer when the object is triggered.

int Obligatory. The initial buffer size, in samples, to copy from the record to
the playback buffer upon receiving a trigger.

int Obligatory. The polarity to use for accepting a trigger signal in the middle
inlet. If the argument is greater than 0, stutter~ accepts a positive trigger;
otherwise stutter~ accepts a negative trigger.

int Obligatory. The number of samples which are copied from the record
buffer to the playback buffer each iteration of the perform loop (the signal
vector size). A larger value will decrease the stutter~ object’s memory
requirements and increase the CPU requirements.

int Optional. An optional fifth argument allows you to specify multiple
independent signal outputs the stutter~ object will use when playing back
from the playback buffer. The default is 1, and the maximum is 30. The
number of phase signal inputs to the stutter~ object is also determined by
this argument.

Output

signal All outlets: The stutter~ object’s outlets produce a signal from the playback
buffer, the location and speed of which is determined by the phase input
for that playback outlet. The number of outlets is determined by the fifth
argument to the stutter~ object.

Signal capture
and granular oscillator stutter~

405

Examples

stutter~ captures a new slice of incoming sound into an oscillating buffer whenever it
receives a trigger

See Also

buffer~ Store audio samples
phasor~ Sawtooth wave generator
record~ Record sound into a buffer

State-variable filter
with simultaneous outputs svf~

406

The svf~ object is an implementation of a state-variable filter algorithm described in Hal
Chamberlin’s book, “Musical Applications of Microprocessors.” A unique feature of this filter
object is that it produces lowpass, highpass, bandpass, and bandreject (notch) output
simultaneously — all four are available as outlets.

Input

signal In left inlet: Signal to be filtered.

In middle inlet: Sets the filter center frequency in Hz.

In right inlet: Sets the bandpass filter “Q” — roughly, the sharpness of the
filter — where Q is defined as the filter bandwidth divided by the center
frequency. Useful Q values are typically between 0.01 and 500.

float In middle and right inlets: A float can be sent in the two right inlets to change
the center frequency and Q of the filter. By default, the center frequency is
expressed in Hz, where the allowable range is from 0 to one fourth of the
current sampling rate. For convenience, svf~ has two additional input modes
that use the more conventional input range, 0 - 1. (see the linear and radians
messages). If a signal is connected to one of the inlets, a number received in
that inlet is ignored. The values are sampled once every signal vector.

Hz In either inlet: Sets the frequency input mode to Hz (the default).

linear In any inlet: Sets the frequency input mode to linear (0 - 1). Linear mode is
simply a scaled version of the standard Hz mode, except that values in the 0-1
range traverse the full frequency range.

radians In any inlet: Sets the frequency input mode to radians (0 - 1). Radians mode
lets you set the center frequency directly — while the input has the same range
(0-1), the output has a curved frequency response that is closer to the
exponential pitch scale of the human ear.

Arguments

float Optional. Numbers set the initial gain, center frequency, and Q. The default
values are 0 for gain, 0 for center frequency, and 0.01 for Q.

Hz Optional. Sets the frequency input mode to Hz (the default mode - hence this
is the same as providing no mode argument).

State-variable filter
with simultaneous outputs svf~

407

linear Optional. Sets the frequency input mode to linear (0 -1).

radians Optional. Sets the frequency input mode to radians (0 -1).

Output

signal The filtered input signal.

Examples

Four filter outputs are simultaneously available from the svf~ object

See Also

biquad~ Two-pole, two-zero filter
onepole~ Single-pole lowpass filter
techno~ Signal-driven sequencer

Synchronize MSP with
an external source sync~

408

Input

signal The sync~ object will set its tempo to match an audio click track input. The
click track should contain amplitude peaks at quarter-note intervals of the
desired tempo. Signal input will affect the tempo only if sync~ detects peak
values greater than 0.1 and within the tempo range of approximately 30-240
BPM.

bang A sequence of bang messages is used to set the tap tempo. A bang message is
interpreted as one tap. If the sync~ object receives three taps in a row with
reasonably consistent timing, it changes the tempo to match them.

int MIDI beat clock. Integer input is interpreted as MIDI data—you can directly
connect the output of an rtin object. sync~ responds to MIDI beat clock
start/stop (int 250 and 252), and tick (248). All other values are ignored.

start The word start causes the current output ramp to halt, and resets the ramp to 0.
The start message has the same effect as receiving the MIDI beat clock start
value (250). When the start message is received, sync~ outputs the number 250
from the MIDI beat clock output so that any external devices will also start.

stop The word stop causes the current output ramp to halt, and to remain stationary
until a start message is received. It is equivalent to sending the MIDI beat
clock stop value (252). When the stop message is received, the sync~ object
sends the number 252 from its MIDI beat clock output. The sync~ object does
not send MIDI beat clock ticks while it is stopped.

ppq The word ppq (parts per quarter), followed by a number, specifies the number
of ticks output for each quarter note. By default, MIDI beat clock specifies a
PPQ of 24. The ppq message is useful mainly for doubling or halving the
tempo for an external device that is set to a different time signature. The ramp
signal generated by the sync~ object can be scaled for output further by using
the rate~ object.

Arguments

None.

Synchronize MSP with
an external source sync~

409

Output

signal Left outlet: Like the phasor~-object, the sync~ object generates a sawtooth
waveform that increases from 0 to 1 for each quarter note of the current
tempo. This ramp can be scaled as necessary with the rate~ object, for use with
wave~ and other objects.

bpm Out middle outlet: Whenever the tempo changes, sync~ outputs the message
bpm, followed by a float value that specifies the new tempo.

tap Out middle outlet: When the sync~ object receives a tap, it sends a tap message
out the middle outlet.

click Out middle outlet: When the sync~ object receives an audio click, it sends a
click message out the middle outlet.

midi Out middle outlet: When the sync~ object receives a MIDI beat clock tick, it
sends a midi message out the middle outlet.

int Out right outlet: sync~ generates a MIDI beat clock stream that matches its
output ramp. Typically, when needed, this outlet is connected directly to a
midiout object.

Examples

See Also

midiout Transmit raw MIDI data
phasor~ Sawtooth wave generator
rate~ Time-scale the output of a phasor~
rtin Output received MIDI real-time messages
seq Signal-driven event sequencer
wave~ Variable-size wavetable

Signal hyperbolic
tangent function tanh~

410

Input

signal Input to a hyperbolic tangent function.

Arguments

None.

Output

signal The hyperbolic tangent of the input.

Examples

Use tanh~ to generate periodic control signals

See Also

atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
tanx~ Signal tangent function

Signal
tangent function tanx~

411

Input

signal Input to a tangent function.

Arguments

None.

Output

signal The tangent of the input.

Examples

Generate spikes (tangents increase exponentially as the input approaches �/2) using tanx~

See Also

atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
tanh~ Signal hyperbolic tangent function

Input to a
delay line tapin~

412

Input

signal The signal is written into a delay line that can be read by the tapout~
object.

clear Clears the memory of the delay line. which may produce a click in the
output.

Arguments

float or int Optional. The maximum delay time in milliseconds. This determines the
size of the delay line memory. If the sampling rate is increased after the
object has been created, tapin~ will attempt to resize the delay line. If no
argument is present, the default maximum delay time is 100 milliseconds.

Output

tap In order for the delay line to function, the outlet of tapin~ must be
connected to the left inlet of tapout~. It cannot be connected to any other
object.

Examples

tapin~ creates a delay buffer from which to tap delayed signal

See Also
delay~ Delay line specified in samples
tapout~ Output from a delay line
Tutorial 27 Processing: Delay lines

Output from a
delay line tapout~

413

The outlet of a tapin~ object must be connected to the left inlet of tapout~ in order for the
delay line to function.

The tapout~ object has one or more inlets and one or more outlets. A delay time signal or
number received in an inlet affects the output signal coming out of the outlet directly
below the inlet.

Input

signal If a signal is connected to an inlet of tapout~, the signal coming out of the
outlet below it will use a continuous delay algorithm. Incoming signal
values represent the delay time in milliseconds. If the signal increases
slowly enough, the pitch of the output will decrease, while if the signal
decreases slowly, the pitch of the output will increase. The continuous delay
algorithm is more computationally expensive than the fixed delay
algorithm that is used when a signal is not connected to a tapout~ inlet.

float or int If a signal is not connected to an inlet of tapout~, a fixed delay algorithm is
used, and a float or int received in the inlet sets the delay time of the signal
coming out of the corresponding outlet. This may cause clicks to appear in
the output when the delay time is changed. However, fixed delay is suitable
for many applications such as reverberation where delay times do not
change dynamically, and it is computationally less expensive than the
continuous delay algorithm.

list In left inlet: Allows several fixed delay times to be changed at the same
time. The first number in the list sets the delay time for the first outlet, and
so on. If any inlets corresponding to list values have signals connected to
them, the values are skipped.

Arguments

float or int Optional. One or more initial delay times in milliseconds, one for each
delay “tap” inlet-outlet pair desired. For example, the arguments 50 100
300 would create a tapout~ object with three independent “taps”
corresponding to three inlets and three outlets. If a signal is connected to an
inlet, the initial delay time corresponding to that inlet-outlet pair is
ignored.

Output from a
delay line tapout~

414

Output

signal Each outlet of tapout~ corresponds to an individually controlled “tap” of a
delay line written by the tapin~ object. The output signal coming out of a
tapout~ outlet is the input to tapin~ delayed by the number of milliseconds
specified by the numerical or signal control received in the inlet directly
above the outlet.

Examples

tapout~ sends out the signal tapin~ receives, delayed by some amount of time

See Also

delay~ Delay line specified in samples
tapin~ Input to a delay line
Tutorial 27 Processing: Delay lines

Signal-driven step sequencer techno~

415

Input

signal A signal is used as an input to the techno~ object to specify the step
position in a sequence. The signal is in the range 0-1.0 and indicates a
phase value, expressed as a fraction of the number of total steps in the
sequence (set using the size message. A phasor~ object is customarily used
as input to the techno~ object. All input signals are clipped to the range 0-
1.0

length The word length, followed by a number, sets the number of notes in the
sequence. The default is 1.

pos The word pos, followed by an integer that specifies the sequencer step and a
float that specifies a start position, positions the step to the specified
position. A step may not be placed before the previous step or after the
next step. For instance, a uniformly-spaced four step sequence will have its
steps in positions 0.0, 0.25, 0.5 and 0.75, so a pos message for the third step
(index 2) can only specify positions between 0.25 and 0.75.

repeatpos The word repeatpos, followed by one or more floats, allows repeating settings
of non-uniform sequencer step sizes. The number of floats following the
lengths message represents one less than the size of the repeating segment
of steps – this segment size can be any even divisor of the total number of
steps in the sequence. So for instance with an eight-step sequence the
length of the segment can be 2, 4, or 8 steps. The floating point
arguments, which must be strictly increasing and in the range between 0
and 1, set the relative width of each step. For instance, one can set uniform
divisions for a sequence with an even number of steps with any of the
following messages: “

repeatpos 0.5

repeatpos 0.25 0.5 0.75

repeatpos 0.125 0.25 0.375 0.5 0.625 0.75 0.875

The message repeatpos 0.66 affects a repeating segment two steps long,
giving the first step 66% of the time and the second step 34%. (This is like
classic “swing” on a drum machine.)

amplitude The word amplitude, followed by a number that specifies the sequencer step
and a float that specifies an amplitude value, sets the amplitude (as an

Signal-driven step sequencer techno~

416

absolute factor) of a step’s output note. The amplitude is specified as an
absolute factor of that step’s note—an amplitude of 1.0 will result in the
amplitude output signal having a value of 1.0 at the very beginning of the
step.

pitch The word pitch, followed by a number that specifies the sequencer step and
a float that specifies a pitch as a Hertz frequency, sets the pitch of that
step’s note.

curve The word curve, followed by a number that specifies the sequencer step and
a float that specifies the exponent of a curve, sets the curve used to
calculate the trajectory of pitch from the previous step.

A value of 1.0 represents a linear slide from the previous step; a value of 0.5
represents a square root function; a value of 2.0 represents a second-order
parabolic slide; etc. The curve message lets you set and experiment with
different varieties of portamento.

attack The word attack, followed by a number that specifies the sequencer step and
a float that specifies the exponent of a curve, sets the curve used to
calculate the amplitude trajectory from 0.0 at the beginning of the
previous step to the amplitude value at the beginning of the current step.
The values used to specify the exponents of the curve are the same as those
used for the curve message.

decay The word decay, followed by a number that specifies the sequencer step and
a float that specifies the exponent of a curve, sets the curve used to
calculate the decay trajectory from the amplitude value at the beginning of
this previous step to 0.0 at the beginning of the next step. The values used
to specify the exponents of the curve are the same as those used for the
curve message.

Arguments

None.

Output

signal Out left inlet: Pitch signal output for oscillator(s).

Out middle inlet: An amplitude envelope. You can multiply this signal
output with the output of your oscillators.

Signal-driven step sequencer techno~

417

Out right inlet: The current position in the step sequence. Each step
represents a distance of 1.0 and the total output range is from 0 to the
value set by the size message.

Examples

techno~ use as a synth sequencer or to trigger individual samples, like a drum machine

See Also

adsr~ ADSR envelope generator
cycle~ Table lookup oscillator
phasor~ Sawtooth wave generator
rate~ Time-scale the output of a phasor~
rect~ Antialiased rectangular (pulse) oscillator
saw~ Antialiased sawtooth oscillator
seq~ Signal-rate event sequencing
svf~ State-variable filter
tri~ Antialiased triangular oscillator

Comb filter with feedforward
and feedback delay control teeth~

418

Input

signal In left inlet: Signal to be filtered. The teeth~ object is a variant of comb~—a
comb filter that mixes the current input sample with earlier input and/or
output samples to accentuate and attenuate the input signal at regularly
spaced frequency intervals. Unlike the comb~ object, teeth~ adds
feedforward and feedback, which adds to the extremity of the effect.

In 2nd inlet: Feedforward—the delay, in milliseconds, before past samples
of the input are added to the current input.

In 3rd inlet: Feedback—The delay, in milliseconds, before past samples of
the output are added to the current input.

In 4th inlet: Gain coefficient for scaling the amount of the input sample to
be sent to the output.

In 5th inlet: Gain coefficient for scaling the amount of feedforward to be
sent to the output.

In right inlet: Gain coefficient for scaling the amount of feedback to be
sent to the output.

float or int The filter parameters in inlets 2 to 6 may be specified by a float instead of a
signal. If a signal is also connected to the inlet, the float is ignored.

list The six parameters can be provided as a list in the left inlet. The first
number in the list is the feedforward delay, the next number is the feedback
delay, the third number is the Gain coefficient for the input sample, the
fourth number is the feedforward gain coefficient, and the fifth number is
the feedback gain coefficient. If a signal is connected to a given inlet, the
coefficient supplied in the list for that inlet is ignored.

clear Clears the teeth~ object’s memory of previous outputs, resetting them to 0.

Arguments

float Optional. Up to six numbers, to set the feedforward and feedback delays,
the gain coefficient, and the feedforward and feedback gain coefficients. If
a signal is connected to a given inlet, the coefficient supplied as an
argument for that inlet is ignored. If no arguments are present, the

Comb filter with feedforward
and feedback delay control teeth~

419

maximum delay time defaults to 10 milliseconds, and all other values
default to 0.

Output

signal The filtered signal.

Examples

teeth~ does comb filtering on an input signal with variable feedforward and feedback
delays

See Also

allpass~ Allpass filter
comb~ Comb filter
delay~ Delay line specified in samples
reson~ Resonant bandpass filter

Control poly~
voice allocation and muting thispoly~

420

The thispoly~ object is placed inside a patcher loaded by the poly~ object. It sends and
receives messages from the poly~ object that loads it.

Input

bang Reports the instance number of the patch. The first instance is reported as
1.

signal A signal input can be used to set the “busy” state of the patcher instance.
When an incoming signal is non-zero, the busy state for the patcher
instance is set to 1. When no signal is present, the busy state is set to 0.

int A value of 0 or 1 toggles the “busy” state off or on for the patcher instance.
When “busy” (i.e., set to 1) the object will not receive messages generated
by a note or midinote message to the left inlet of the parent poly~ object.

mute The mute message toggles the DSP for the loaded instance of the patcher on
(0) and off (1). This message can be combined with an int message which
toggles the “busy” state of the patcher to create voices in a patcher which
are only on while they play a “note”.

Arguments

None.

Output

int Out left outlet: The instance number, starting at 1, reported when thispoly~
receives the bang message. If the patcher containing thispoly~ was not
loaded within a poly~ object, 0 is output.

int Out right outlet: If the loaded instance of the patcher is muted, a 1 is
output. If the instance is not muted, a 0 is output.

Control poly~
voice allocation and muting thispoly~

421

Examples

thispoly~ reports the instance number of its poly~ subpatcher

See Also

in Message input for a patcher loaded by poly~
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~
out~ Signal output for a patcher loaded by poly~
poly~ Polyphony/DSP manager for patchers
Tutorial 21 MIDI control: Using the poly~ object

Detect signal
above a set level thresh~

422

Input

signal In left inlet: A signal whose level you want to detect.

float In middle inlet: Sets the lower (“reset”) threshold level for the input signal.
When a sample in the input signal is greater than or equal to the upper
(“set”) level, thresh~ sends out a signal of 1 until a sample in the input
signal is less than or equal to this reset level.

In right inlet: Sets the upper (“set”) threshold level for the input signal.
When the input is equal to or greater than this value, thresh~ sends out a
signal of 1.

Arguments

float The first argument specifies the reset or low threshold level. If no argument
is present, the reset level is 0. The second argument specifies the set or high
threshold level. If no argument is present, the set level is 0.

If only one argument is present, it specifies the reset level, and the set level
is 0.

Output

signal When a sample in the input signal is greater than or equal to the upper
threshold level, the output is 1. The output continues to be 1 until a sample
in the input signal is equal to or less than the reset level. If the set level and
the reset level are the same, the output is 1 until a sample in the input
signal is less than the reset level.

Examples

Detect when signal exceeds a certain level

Detect signal
above a set level thresh~

423

See Also

>~ Is greater than, comparison of two signals
change~ Report signal direction
edge~ Detect logical signal transitions

Pulse train
generator train~

424

Input

signal In left inlet: Specifies the period (time interval between pulse cycles), in
milliseonds, of a pulse train sent out the left outlet.

In middle inlet: Controls the pulse width or duty cycle. The signal values
represent a fraction of the pulse interval that will be devoted to the “on”
part of the pulse (signal value of 1). A value of 0 has the smallest “on” pulse
size (usually a single sample), while a value of 1 has the largest (usually the
entire interval except a single sample). A value of .5 makes a pulse with
half the time at 1 and half the time at 0.

In right inlet: Sets the phase of the onset of the “on” portion of the pulse.
A value of 0 places the “on” portion at the beginning of the interval, while
other values (up to 1, which is the same as 0) delay the “on” portion by a
fraction of the total inter-pulse interval.

float or int Numbers can be used instead of signal objects to control period, pulse
width, and phase. If a signal is also connected to the inlet, float and int
messages are ignored.

Arguments

float or int Optional. Initial values for inter-pulse interval in milliseconds (default
1000), pulse width (default 0.5), and phase (default 0). If signal objects are
connected to any of the train~ object’s inlets, the corresponding initial
argument value is ignored.

Output

signal Out left outlet: A pulse (square) wave train having the specified interval,
width, and phase.

bang Out right outlet: When the “on” portion of the pulse begins, a bang is sent
out the right outlet. Using this outlet, you can use train~ as a signal-
synchronized metronome with an interval specifiable as a floating-point
(or signal) value. However, there is an unpredictable delay between the “on”
portion of the pulse and the actual output of the bang message, which
depends in part on the current Max scheduler interval. The delay is
guaranteed to be a millisecond or less if the scheduler interval is set to 1
millisecond.

Pulse train
generator train~

425

Examples

Provide an accurate pulse for rhythmic changes in signal

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals
clip~ Limit signal amplitude
phasor~ Sawtooth wave generator

Trapezoidal
wavetable trapezoid~

426

Input

signal or float In left inlet: Any float or signal or an input signal progressing from 0 to 1
is used to scan the trapezoid~ object’s wavetable. The output of a phasor~ or
some other audio signal can be used to control trapezoid~ as an oscillator,
treating the contents of the wavetable as a repeating waveform.

In middle inlet: The ramp up portion of the trapezoidal waveform,
specified as a fraction of a cycle between 0 and 1.0. The default is .1.

In right inlet: The ramp up portion of the trapezoidal waveform, specified
as a fraction of a cycle between 0 and 1.0. The default is .9.

lo In left inlet: The word lo, followed by an optional number, sets the
minimum value of trapezoid~ for signal output. The default value is 0.

hi In left inlet: The word hi, followed by an optional number, sets the
maximum value of trapezoid~ for signal output. The default value is 1.0.

Arguments

float Optional. Two floating-point values can be used to specify the ramp up
and ramp down values. The arguments 0. 0. produce a ramp waveform, and
.5 .5 produces a triangle waveform.

Output

signal A signal which corresponds to the value referenced by the trapezoid~
object’s input signal. If the output of a phasor~ or some other audio signal
is used to scan the trapezoid~ object, the output will be a periodic
waveform.

Trapezoidal
wavetable trapezoid~

427

Examples

trapezoid~ generates a trapezoidal waveform that lets you specify
the phase points at which it changes direction

See Also

buffer~ Store audio samples
cos~ Cosine function
phasor~ Sawtooth wave generator
wave~ Variable-size wavetable
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 3 Fundamentals: Wavetable oscillator

Antialiased
triangular oscillator tri~

428

Input

signal In left inlet: Sets the frequency of the oscillator.

In middle inlet: Sets the duty cycle of the oscillator. Signal is wrapped into the
range 0-1. A value of 0.5 will produce a triangular wave that spends equal
amounts of time sloping positively and negatively.

In right inlet: (optional) A sync signal. When the control signal crosses from
below 0.5 to above 0.5, the oscillator resets itself. A phasor~ object works well
for this purpose. The classic use is to “sweep” this control signal in a frequency
range somewhere at least three or four octaves higher than the fundamental
frequcncy.

int or float In left inlet: Sets the frequency of the oscillator.

In middle inlet: Sets the duty cycle of the oscillator. Signal is wrapped into the
range 0-1. A value of 0.5 will produce a triangular wave that spends equal
amounts of time sloping positively and negatively.

Arguments

int or float (Optional) First argument sets the initial frequency of the oscillator. The
default is 0. Second argument sets the duty cycle. The default is 0.5.

Output

signal An antialiased triangular waveform. A ideal, straight-line triangular wave
generated in a computer contains alias frequencies that can sound irritating.
tri~ produces a nice, analog-esque output waveform.

Antialiased
triangular oscillator tri~

429

Examples

Spectral comparison of tri~ and an ideal triangular wave

See Also

cycle~ Table lookup oscillator
phasor~ Sawtooth wave generator
rect~ Antialiased rectangular (pulse) waveform generator
saw~ Antialiased sawtooth waveform generator
techno~ Signal-driven sequencer
Tutorial 3 Fundamentals: Wavetable oscillator

Triangle/ramp
wavetable triangle~

430

Input

signal or float In left inlet: Any signal, float, or an input signal progressing from 0 to 1 is
used to scan the triangle~ object’s wavetable. The output of a phasor~ or
some other audio signal can be used to control triangle~ as an oscillator,
treating the contents of the wavetable as a repeating waveform.

In right inlet: Peak value phase offset, expressed as a fraction of a cycle,
from 0 to 1.0. The default is .5. Scanning through the triangle~ object’s
wavetable using output of a phasor~ with a phase offset value of 0 produces
a ramp waveform, and a phase offset of 1.0 produces a sawtooth waveform.

lo In left inlet: The word lo, followed by an optional number, sets the
minimum value of triangle~ for signal output. The default value is –1.0.

hi In left inlet: The word hi, followed by an optional number, sets the
maximum value of triangle~ for signal output. The default value is 1.0.

Arguments

float Optional. In right inlet: Peak value phase offset, expressed as a fraction of a
cycle, from 0 to 1.0. The default is .5. A value of 0 produces a ramp
waveform when the triangle~ object is driven by a phasor~, and a value of
1.0 produces a sawtooth waveform.

Output

signal A signal which corresponds to the value referenced by the triangle~ object’s
input signal. If the output of a phasor~ or some other audio signal is used to
scan the triangle~ object, the output will be a periodic waveform.

Triangle/ramp
wavetable triangle~

431

Examples

triangle~ lets you generate ramping waveforms with different reversal points

See Also

buffer~ Store audio samples
cos~ Cosine function
phasor~ Sawtooth wave generator
trapezoid~ Trapezoidal wavetable
tri~ Antialiased triangular oscillator
wave~ Variable-size wavetable
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 3 Fundamentals: Wavetable oscillator

Truncate fractional
signal values trunc~

432

Input

signal A signal whose values will be truncated. The trunc~ object converts signals
with fractional values to the nearest lower integer value (e.g., a value of 1.75
is truncated to 1.0, and –1.75 is truncated to –1.0). This object is simple but
computationally expensive.

Arguments

None.

Output

signal The truncated input signal.

Examples

trunc~ takes floating-point signals and truncated the fractional part

See Also

clip~ Limit signal amplitude
round~ Round an input signal value

Vector-based
envelope follower vectral~

433

Input

signal In left inlet: Accepts a sync signal for the output index of the vector. This
is typically in the range of 0 to n-1 where n is the size of the vector.

In middle inlet: A sync signal received in the middle inlet is used to
synchronize the input index of the vector being processed. The sync signal
will typically be in the range 0 to n-1 where n is the size of the vector. If the
range of the sync signal is different than the output index, the incoming
vector will be “bin-shifted” by the difference between the two signals.

In right inlet: Signal data to be filtered. This will usually be frequency-
domain information such as the output of an fft~ or fftin~ object.

rampsmooth In left inlet: The word rampsmooth, followed by two ints, causes the vector to
be smoothed in a linear fashion across successive frames. The arguments
specify the number of frames to use to interpolate values in both
directions. This is equivalent to the time-domain filtering done by the
rampsmooth~ object.

size In left inlet: The word size, followed by a number, sets the vector size for
the operation. The default is 512.

slide In left inlet: The word slide, followed by two floats, causes vectral~ to do
logarithmic interpolation of successive vectors in a manner equivalent to
the time-domain slide~ object. The two arguments determine the
denominator coefficient for the amount of the slide.

deltaclip In left inlet: The word deltaclip, followed by two floats, limits the change in
bins of successive vectors to the values given. This is equivalent to the
time-domain deltaclip~ object.

Arguments

int Optional. The argument is the vector size for the operation. It defaults to
512, but should be set appropriately for the size of the vectors you feed into
the vectral~ object.

Vector-based
envelope follower vectral~

434

Output

signal A smoothed version of the signal input into the right inlet, according to
the parameters given to the vectral~ object.

Examples

vectral~ performs different types of smoothing between frames of vectored data (e.g., FFT
signals)

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
deltaclip~ Limit changes in signal amplitude
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
rampsmooth~ Smooth an incoming signal
slide~ Filter a signal logarithmically
Tutorial 26 Frequency Domain Signal Processing with pfft

Host VST
plug-ins vst~

435

Input

signal Input to be processed by the plug-in. If the plug-in is an instrument plug-in,
the input will be ignored.

int In left inlet: Changes the effect program of the currently loaded plug-in. The
first program is number 1.

float Converted to int.

list In left inlet: Changes a parameter value in the currently loaded plug-in. The
first list element is the parameter number (starting at 1) and the second
element is the parameter value. The second number should be a float between
0 and 1, where 0 is the minimum value of the parameter and 1 is the
maximum.

any symbol A symbol that names a plug-in parameter followed by a float between 0 and 1
set the value of the parameter.

bypass The word bypass, followed by a non-zero argument, stops any further
processing by the currently loaded plug-in and copies the object's signal input
to its signal output. bypass 0 enables processing for the plug-in.

disable The word disable, followed by a non-zero argument, stops any further
processing by the currently loaded plug-in and outputs a zero signal. disable 0
enables processing for the plug-in.

get The word get, followed by a number argument, reports parameter values and
plug-in information. This is output from the fourth outlet of vst~ as a list with
the said number argument as the first element and the desired information as
the second element. If the number argument is between 1 and the number of
parameters of the currently loaded plug-in (inclusive), the get message outputs
the current parameter value (a float between 0 and 1) of the numbered
parameter. If the argument is 0 nothing is output. If the argument is negative,
the get message outputs a list with the first element specifying the number
argument and the remaining elements specifying the following information:

get -1 the plug-in's number of inputs

get -2 the plug-in's number of outputs

get -3 the plug-in's number of programs

get -4 the plug-in's number of parameters

Host VST
plug-ins vst~

436

get -5 whether the plug-in's canMono flag is set. This indicates that
the plug-in can be used in either a stereo or mono context.

get -6 1 if the plug-in has its own edit window, 0 if it doesn't

get -7 1 if the plug-in is a synth plug-in, 0 if it isn’t

get -8 the unique ID of the plug-in as an integer value

get -9 four integer values representing the left, top, right, and bottom
coordinates of the desired rectangle of the plug-in UI edit
window

get -10 an integer value representing the initial delay of the plug-in in
samples to allow you to automatically compensate for the plug-
in’s latency in your patch

midievent The word midievent, followed by two to four numbers, sends a MIDI event to
the plug-in. The first three number arguments are the bytes of the MIDI
message. The fourth, optional, argument is a detune parameter used for MIDI
note messages. The value ranges from –63 to 64 cents, with 0 being the
default.

mix In left inlet: mix 1 turns mix mode on, in which the plug-in's output is added to
the input. mix 0 turns mix mode off. When mix mode is off, the plug-in's
output is not added to the input. Only the plug-in's output is sent to the vst~
object's signal outlets.

open The word open with no arguments opens the plug-in's edit window. If the
window was previously opened then the edit window location will persist. The
word open followed by two integer values specifying the left and top window
coordinates respectively will open or move the plug-in’s edit window to the
given coordinates.

params The word params causes a list of the plug-in's parameters to be sent out the
fourth-from-right outlet.

pgmnames The word pgmnames causes a list of the plug-in's current program names to be
sent out the right outlet.

plug In left inlet: The word plug with no arguments opens a standard open file
dialog allowing you to choose a new VST plug-in to host. The word plug
followed by a symbol argument searches for VST plug-in with the specified
name in the Max search path. If a new plug-in is opened and found, the old

Host VST
plug-ins vst~

437

plug-in (If any) is discarded and the new one loaded. Note that upon first
loading vst~ the system VST folder will be added to the max search path. On
the Macintosh this is generally /Library/Audio/Plug-ins/VST/ and on windows
this is the folder specified in the VstPluginsPath string value under the registry
key HKLM\Software\VST.

read With no arguments, read opens a standard open file dialog prompting for a file
of effect programs, either in bank or individual program format. read accepts
an optional symbol argument where it looks for a VST plug-in bank or effect
program file in the Max search path.

set In left inlet: The word set, followed by a symbol, changes the name of the
effect current program to the symbol.

settitle In left inlet: The word settitle, followed by a symbol, changes the title displayed
for the name of the plug-in’s edit window.

wclose Closes the plug-in's edit window.

write With no arguments, write opens a standard Save As dialog box prompting you
to choose the name and type of the effect program file (single program or
bank). write accepts an optional symbol argument that specifies a full or partial
destination pathname. An individual program file is written in this case.

writebank With no arguments, writebank opens a standard Save As dialog box prompting
you to choose the name of the effect program bank file. writebank accepts an
optional symbol argument that specifies a full or partial destination pathname.

writepgm With no arguments, writepgm opens a standard Save As dialog box prompting
you to choose the name of the individual effect program file. writepgm accepts
an optional symbol argument that specifies a full or partial destination
pathname.

Arguments

int Optional. If the first or first and second arguments are numbers, they set the
number of audio inputs and outputs. If there is only one number, it sets the
number of outlets. If there are two numbers, the first one sets the number of
inlets and the second sets the number of outlets.

symbol Optional. Sets the name of a VST plug-in file to load when the object is
created. You can load a plug-in after the object is created (or replace the one
currently in use) with the plug message.

Host VST
plug-ins vst~

438

symbol Optional. After the plug-in name, a name containing preset effects for the
plug-in can be specified. If found, it will be loaded after the plug-in has been
loaded.

Output

signal Out left outlet and other signal outlets as defined by the number of outputs
argument: Audio output from the plug-in. The left outlet is the left channel
(or channel 1).

symbol Out fourth-from-right outlet: The plug-in's parameters are sent out as a series
of symbols in response to the params message.

Note: Some plug-ins, especially those with their own editors, fail to name the
parameters.

int or float Out third-from-right outlet: Parameter values or plug-in informational values
in response to the get message.

int Out second-from-right outlet: Raw MIDI bytes received by the plug-in (but
not any MIDI messages received using the midievent message).

symbol Out right outlet: A series of symbols are sent out in response to the pgmnames
message. If there are no program names, the message pgmnames: Default is output.

Examples

Process an audio signal with a VST plug-in

See Also

rewire~ Host ReWire devices

Variable size
wavetable wave~

439

Input

signal In left inlet: Input signal values progressing from 0 to 1 are used to scan a
specified range of samples in a buffer~ object. The output of a phasor~ can
be used to control wave~ as an oscillator, treating the range of samples in
the buffer~ as a repeating waveform. However, note that when changing
the frequency of a phasor~ connected to the left inlet of wave~, the
perceived pitch of the signal coming out of wave~ may not correspond
exactly to the frequency of phasor~ itself if the stored waveform contains
multiple or partial repetitions of a waveform. You can invert the phasor~ to
play the waveform backwards.

In middle inlet: The start of the waveform as a millisecond offset from the
beginning of a buffer~ object’s sample memory.

In right inlet: The end of the waveform as a millisecond offset from the
beginning of a buffer~ object’s sample memory.

float or int In middle or right inlets: Numbers can be used instead of signal objects to
control the start and end points of the waveform, provided a signal is not
connected to the inlet that receives the number. The wave~ object uses the
buffer~ sampling rate to determine loop points.

enable In left inlet: The message enable 0 disables the object, causing it to ignore
subsequent signal input(s). The word enable followed by any non-zero
number enables the object once again.

interp The word interp, followed by a number in the range 0-2, sets the wavetable
interpolation mode. The interpolation modes are:

value description

0 No interpolation. Wavetable interpolation is disabled using
the interp 0 message.

1 High-quality linear interpolation (default)

2 Low-quality linear interpolation. This mode uses the
interpolation method found in MSP 1.x versions of the
wave~ object. While this mode is faster than mode 1, it
cannot play buffer~ objects of arbitrary length and produces
more interpolation artifacts.

Variable size
wavetable wave~

440

set In left inlet: The word set, followed by a symbol, sets the buffer~ used by
wave~ for its stored waveform. The symbol can optionally be followed by
two values setting new waveform start and end points. If the values are not
present, the default start and end points (the start and end of the sample)
are used. If signal objects are connected to the start and/or end point
inlets, the start and/or end point values are ignored.

Arguments

symbol Obligatory. Names the buffer~ object whose sample memory is used by
wave~ for its stored waveform. Note that if the underlying data in a buffer~
changes, the signal output of wave~ will change, since it does not copy the
sample data in a buffer~. wave~ always uses the first channel of a multi-
channel buffer~.

float or int Optional. After the buffer~ name argument, you can type in values for the
start and end points of the waveform, as millisecond offsets from the
beginning of a buffer~ object’s sample memory. By default the start point is
0 and the end point is the end of the sample. If you want to set a non-zero
start point but retain the sample end as the waveform end point, use only a
single typed-in argument after the buffer~ name. The wave~ object uses the
buffer~ sampling rate to determine loop points. If a signal is connected to
the start point (middle) inlet, the initial waveform start point argument is
ignored. If a signal is connected to the end point (right) inlet, the initial
waveform end point is ignored. An additional optional integer can used to
specify the number of channels in the buffer~ file.

int Optional. Sets the number of output channels, which determines the
number of outlets that the wave~ object will have. The maximum number
of signal outputs is 4. If the buffer~ object being played by wave~ has more
channels than the number of outputs of wave~, the extra channels are not
played. If the buffer~ object has fewer channels, the extra wave~ signal
outputs are 0.

Output

signal The portion of the buffer~ specified by the wave~ object’s start and end
points is scanned by signal values ranging from 0 to 1 in the wave~ object’s
inlet, and the corresponding sample value from the buffer~ is sent out the
wave~ object’s outlet. If the signal received in wave’s inlet is a repeating
signal such as a sawtooth wave from a phasor~, the resulting output will be

Variable size
wavetable wave~

441

a waveform (excerpted from the buffer~) repeating at the frequency
corresponding to the repetition of the input signal.

Examples

Loop through part of a sample, treating it as a variable-size wavetable

See Also

2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
buffir~ Buffer-based FIR filter
groove~ Variable-rate looping sample playback
phasor~ Sawtooth wave generator
play~ Position-based sample playback
sync~ Synchronize MSP with an external source
Tutorial 15 Sampling: Variable-length wavetable

buffer~ viewer
and editor waveform~

442

Input

float In left inlet: Sets the display start time in milliseconds. Changing this value
will offset and/or zoom the view, so that the requested time in the buffer~
sample data is aligned to the left edge of the display. The default is 0 (display
starts at the beginning of the target buffer~).

In 2nd inlet: Sets the display length in milliseconds. The default is the length
of the buffer~.

In 3rd inlet: Sets the start time of the selection range in milliseconds.

In 4th inlet: Sets the end time of the selection range in milliseconds.

list In 5th inlet: The 5th inlet provides a link input, which allows any number of
waveform~ objects to share their start, length, select start, and select end values.
Whenever any of these values changes, waveform~ sends them all as a list out
its right outlet. If this outlet is connected to the link input of another
waveform~ object, it will be updated as it receives the lists.

To complete the circuit, the second waveform~ object’s list output can be
connected to the link input of the first. Then, changes in either one (via
mouse clicks, etc.) will be reflected in the other. This is mainly useful when the
waveform~ objects are viewing different channels of the same buffer~. Any
number of waveform~ objects can be linked in this fashion, forming one
long, circular chain of links. In this case waveform~ will prevent feedback from
occurring.

bpm The word bpm, followed by one or two numbers, sets the reference tempo and
number of beats per bar used by the waveform~ display. The first argument sets
the tempo in beats per minute. The default is 120. The second argument is
optional, and specifies the number of beats per bar. The default is 4. The bpm
message automatically changes the display time unit to bpm, as if you had sent
the message unit bpm. Time values are shown in bars and beats, with
subdivisions of the beat displayed in floating-point. The offset message can be
useful to align the metric information with the contents of the target buffer~.
waveform~ can calculate a tempo based on the current selection with the setbpm
message.

brgb The word brgb, followed by three numbers in RGB format, sets the background
color used to paint the entire object rectangle before the rest of the display
components are drawn on top.

buffer~ viewer
and editor waveform~

443

clipdraw The word clipdraw, followed by a 1, will cause values being edited in draw mode
to be clipped to the range of the display (as determined by the vzoom message).
clipdraw 0 disables clipping, allowing values to be scaled freely beyond the range
of the window. The default is 0, no clipping.

crop The crop message will trim the audio data in the target buffer~ to the current
selection. It resizes the buffer~ to the selection length, copies the selected
samples into it, and displays the result at default settings. The buffer~ is erased,
except for the selected range. This is a “destructive edit,” and cannot be
undone.

frgb The word frgb, followed by three numbers in RGB format, sets the foreground
color used to draw the buffer~ data as a waveform graph.

grid The word grid, followed by an int or float, specifies the spacing of the vertical
grid lines, relative to the current time measurement unit. For example, when
waveform~ is using milliseconds to display time values, the message, grid 1000
will cause grid lines to be drawn 1000 milliseconds apart in the waveform~
display. If labels are enabled, they will be drawn at the top of these grid lines. If
tick marks are enabled, they will be drawn between these grid lines. An
argument of 0 or no argument disables the grid lines.

labels The word labels, followed by an int, enables (1) or disables (0) the numerical
labels of time measurement across the top of the display. Any non-zero int
causes the labels to be drawn. An argument of 0, or no argument, disables
them.

line The word line, followed by a numerical value representing a time in
milliseconds, will cause a vertical line to be superimposed on the waveform
display at the millisecond point indicated by the argument. The purpose of this
is to be able to visually indicate where the playback point of the waveform is at
any given moment.

mode The word mode, followed by a symbol argument, determines how the
waveform~ object responds to mouse activity. Valid symbol arguments are none,
select, loop, move, and draw.

none Causes waveform~ to enter a “display only” mode, in which
clicking and dragging have no effect. For convenience, and to
add custom interface behavior, mouse activity is still sent
according to the mouseoutput mode. A mode message with no
argument has the same effect as mode none.

buffer~ viewer
and editor waveform~

444

select Sets the default display mode of the waveform~ object. In select
mode, the cursor appears as an I-beam within the waveform~
display area. You can click and drag with the mouse to select a
range of values. Mouse activity will cause waveform~ to
generate update messages, according to the mouseoutput
setting.

loop Sets an alternative loop selection style that uses vertical mouse
movement to grow and shrink the selection length, while hori-
zontal movement is mapped to position. This works well to
control a groove~ object, as demonstrated in the
waveform~.help file. When loop mode is selected, moving your
cursor inside the display area changes its appearance to a double
I-beam.

move Sets the move display mode of the waveform~ object. This mode
allows you to navigate the waveform~ view. Vertical mouse
movement lets you zoom in and out, while horizontal
movement scrolls through the time range of the x-axis.
Clicking on a point in the graph makes it the center reference
point for the rest of the mouse event (until the mouse button is
released). This lets you “grab” a spot and zoom in on it without
having to constantly re-center the display.

draw Sets the draw display mode of the waveform~ object. This mode
allows you to edit the values of the target buffer~, using a pencil
tool. Clicking and dragging in draw mode directly changes the
buffer~ samples, and can not be undone. Sample values are
interpolated linearly as you drag, resulting in a continuous
change, even if you are zoomed out too far to see the individual
samples.

mouseoutput The word mouseoutput, followed by a symbol argument, determines when selec-
tion start and end values are sent in response to mouse activity. Only the
selection start and end (outlets 3 and 4) are affected. Mouse information is
always sent from outlet 5, regardless of the mouseoutput mode. Valid symbol
arguments are, none, down, up, downup, and continuous.

none Selection start and end values are not sent in response to
mouse activity. Sending the mouseoutput message with no
argument has the same effect as the symbol (none).

buffer~ viewer
and editor waveform~

445

down Causes the current selection start and end values to be sent
(from outlets 3 and 4) only when you click inside the
waveform~.

up Causes selection start and end to be sent only when you release
the mouse button, after clicking inside the waveform~.

downup Causes selection start and end to be sent both when you click
inside the waveform~, and when the mouse button is released.

continuous Causes selection start and end to be sent on click, release, and
throughout the drag operation, whenever the values change.

normalize The word normalize, followed by a float, will scale the sample values in the target
buffer~ so that the highest peak matches the value given by the argument. This
can cause either amplification or attenuation of the audio, but in either case,
every buffer~ value is scaled, and this activity cannot be undone.

norulerclick The word norulerclick, followed by an int, disables (1) or enables (0) clicking and
dragging in the ruler area of the waveform~ display. The default is enabled.

offset The word offset, followed by a float, causes all labels and time measurement
markings to be shifted by the specified number of milliseconds. Snap behavior
is shifted as well. offset can be removed by sending the message offset 0., or the
offset message with no argument.

rgb2 The rgb2, followed by three numbers in RGB format, is applied to the selection
rectangle, which identifies the selection range.

rgb3 The word rgb3, followed by three numbers in RGB format, sets the frame color,
used to draw the single-pixel frame around the object rectangle and the label
area.

rgb4 The word rgb4, followed by three numbers in RGB format, sets the label text
color.

rgb5 The word rgb5, followed by three numbers in RGB format, sets the label back-
ground color.

rgb6 The word rgb6, followed by three numbers in RGB format, applies the color to
tickmarks and measurement lines (if enabled).

buffer~ viewer
and editor waveform~

446

rgb7 The word rgb7, followed by three numbers in RGB format, sets the selection
rectangle “OpColor”. The selection rectangle is painted using rgb2 as a
foreground color, as specified above. However, the transfer mode during this
operation is set to “blend,” with rgb7 as an OpColor. Experiment with
different combinations of rgb2 and rgb7 to see how they affect color and
opacity differently. Shades of gray can be useful here.

set The word set, followed by a symbol or int which is the name of a buffer~ object,
links waveform~ to the target buffer~, which is drawn with default display
values. An optional int argument sets the channel offset, for viewing multi-
channel buffer~ objects. The name of the linked buffer~ is not saved with the
Max patch, so should be stored externally if necessary.

setbpm The word setbpm, with no arguments, causes waveform~ to calculate a tempo
based on the current selection range. It automatically changes the display time
unit to bpm, as if you had sent the message unit bpm. A tempo is selected such
that the selection range constitutes a logical multiple or subdivision of the bar,
preserving the current beats per bar value, and attempting to find the closest
value to the current tempo that satisfies its criteria. When a suitable tempo is
selected, the offset parameter is adjusted so that the start time of the selection
range falls exactly on a bar line.

The result is that the selection area will be framed precisely by a compatible
tempo. One use of this technique is to quickly establish time labels and tick
marks for a section of audio. After selecting a bar as accurately as possible,
sending the setbpm message and turning on snap to label allows immediate
quantization of the selection range to metric values.

If the target buffer~ contains an audio segment that is already cropped to a
logical number of beats or bars, the best technique is to select the entire range
of the buffer~ (with messages to the select start and end inlets), followed by the
setbpm message. If the buffer~ is cropped precisely, the resulting tempo overlay
should be quite accurate, and immediately reveal the tempo along with metric
information.

When a new tempo is calculated, it is sent from the rightmost outlet (the link
outlet), to update any linked waveform~ objects, and to be used in whatever
manner required by the surrounding patch.

snap The word snap, followed by a symbol argument, Sets the snap mode of the
waveform~ selection range. snap causes the start and end points of the selection

buffer~ viewer
and editor waveform~

447

to automatically move to specific points in the buffer~, defined by the snap
mode. Possible arguments are none, grid, and zero.

none Disables snap to allow free selection. This is the default. The snap
message with no argument has the same effect.

grid Specifies that the selection start and end points should snap to
the vertical grid lines, as set by the grid message. Since the
spacing of the grid lines is affected by the current time
measurement unit, and by the offset value (if an offset has
been specified), snap to grid will be affected by these
parameters as well.

tick Causes the selection start and end to snap to the tick divisions
specified by the ticks message.

zero Instead of snapping the selection to a uniform grid, this mode
searches for zero-crossings of the buffer~ data. These are defined
as the points where a positive sample follows a negative sample,
or vice-versa. This can be useful to find loop and edit points.

ticks The word ticks, followed by a number, specifies the number of ticks that should
be drawn between each grid line. The default is eight. An argument of 0, or no
argument, disables the tick marks.

undo This mode works for waveform~ selection only. It causes the selection start and
end points to revert to their immediately previous values. This is helpful when
you are making fine editing adjustments with the mouse and accidentally click
in the wrong place, or otherwise cause the selection to change unintentionally.
Repeated undo commands will toggle between the last two selection states.

unit The word unit, followed by a symbol argument, sets the unit of time
measurement used by the display. Valid symbol arguments are ms, samples, phase,
and bpm.

ms Sets the display unit to milliseconds. This is the default.

samples Causes time values to be shown as sample positions in the
target buffer~. The first sample is numbered 0, unless the display
has been shifted by the offset message.

phase Causes time to be displayed according to phase within the
buffer~, normalized so that the 0 refers to the first sample, and 1

buffer~ viewer
and editor waveform~

448

refers to the last. This type of measurement unit is especially
relevant when working with objects that use 0-1 signal sync,
such as phasor~ and wave~.

bpm Specifies beats per minute as the time reference unit, relative to
a master tempo and number of beats per bar, both of which you
can set with the bpm message. waveform~ can also calculate a
tempo that fits your current selection, via the setbpm message.

vlabels The word vlabels, followed by an int, enables or disables the vertical axis labels
along the rightmost edge of the waveform~ display. Any non-zero number
causes the labels to be drawn. An argument of 0, or no argument, disables
them.

voffset The word voffset, followed by a float, sets the vertical offset of the waveform~
display. A value of 0. places the x-axis in the middle, which is the default.

vticks The word vticks, followed by an int, enables or disables the vertical axis tick marks
along the left and right edges of the waveform~ display. Any non-zero int
causes the tick marks to be drawn. An argument of 0, or no argument, disables
them.

vzoom The word vzoom, followed by a float, sets the vertical scaling of the waveform~
display.

Inspector

The behavior of a waveform~ object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any waveform~ object
displays the waveform~ Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the Inspector.

The waveform~ Inspector lets you set the following attributes:

The Snap pull-down menu sets the snap mode of the waveform~ selection
range. snap causes the start and end points of the selection to automatically
move to specific points in the buffer~, defined by the snap mode. Possible
arguments are none (the default), grid, and zero. This corresponds to the snap
message, above.

The Grid section of the Inspector is used to set an offset, in milliseconds. All
labels and time measurement markings are shifted by the specified number of

buffer~ viewer
and editor waveform~

449

milliseconds (default 0). The grid option is used to specify the spacing of the
vertical grid lines (default 1000.) relative to the current time measurement unit.
A value of 0 disables the grid lines.

The Tempo section of the Inspector is used to set a tempo value for the display
in BPM (beats per Minute). The default value is 120.n offset, in milliseconds.
All labels and time measurement markings are shifted by the specified number
of milliseconds (default 0). The grid option is used to specify the spacing of the
vertical grid lines (default 1000.) relative to the current time measurement unit.
A value of 0 disables the grid lines.

The setbpm button is used to automatically set the tempo for BPM display.
this is similar to setting the PBM, except that waveform~ object determines the
new tempo. It finds the nearest tempo that “fits” the current
selection—meaning that the selection length will be exactly one beat, one bar,
or multiple (powers of 2) bars.

The Ticks section of the Inspector is used to display timing labels and markers
(ticks) in the waveform~ object display. Checking the labels checkbox turns on
the numerical time display (default is on). Checking the vlabels checkbox
turns on the vertical tick mark labels (default is off). Checking the ticks
checkbox turns on the tick mark display beneath the time labels (default is
on). Checking the vticks checkbox turns on the vertical tick marks (default is
on).

The Edit Mode pull-down menu is used to set the display modes of the
waveform~ object used when selecting and editing. The default is select mode
(see the mode message above).

Mouse Output pull-down menu determines when mouse activity triggers the
display and selects output (see the output message above). The default mode is
continuous.

The Edit Mode pull-down menu is used to set the display modes of the
waveform~ object. The default is select mode (see the mode message above).

The Color pull-down menu lets you use a swatch color picker or RGB values to
specify the colors used for display by the waveform~ object.

The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before
you opened the Inspector window by choosing Undo Inspector Changes
from the Edit menu while the Inspector is open.

buffer~ viewer
and editor waveform~

450

Arguments

None.

Output

float Out 1st outlet: The display start time of the waveform in milliseconds.

Out 2nd outlet: The display length in milliseconds.

Out 3rd outlet: The start time of the selection range in milliseconds.

Out 4th outlet: The end time of the selection range in milliseconds.

list Out 5th outlet: This is the mouse outlet, which sends information about mouse
click/drag/release cycles that are initiated by clicking within the waveform~
object. The list contains three numbers.

The first number is a float specifying the horizontal (x) position of the mouse,
in 0-1 scale units relative to the waveform~ object. x is always 0 at the left edge
of the waveform~, and 1. at the right edge.

The second number in the list is the floating-point y value of the mouse,
scaled to match the buffer~ values. With the default vzoom = 1. and voffset = 0.,
the top of the waveform~ gives a y value of 1, and the bottom is –1.

Finally, the third number in the list is an int that indicates which portion of
the mouse event is currently taking place. On mouse down, or click, this value
is 1. During the drag, it is 2, and on mouse up it is 3. These can be helpful
when creating custom responses to mouse clicks. Note that a drag (2) message
is sent immediately after the mouse down (1) message, whether the mouse has
moved or not, to indicate that the drag segment has begun.

Out 6th outlet: waveform~ outputs a list containing its display start time,
display length, selection start time, and selection end time, whenever one of
these values changes (by mouse activity, float input, etc.). See the link input
information above for more information.

buffer~ viewer
and editor waveform~

451

Examples

waveform~ lets you view, select, and edit sample data from a buffer~ object

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback

Detect zero
crossings zerox~

452

Input

signal In left inlet: A signal to be analyzed.

set In left inlet: The word set, followed by a floating-point number in the
range 0.0-1.0, sets the volume of the click (impulse) sent out the right
outlet. The default value is 1.0.

Arguments

float Optional. Sets the output volume for the click sent out the right outlet.
Volume values are in the range 0.0-1.0. The default value is 1.0.

Output

signal Out left outlet: A signal whose value corresponds to the number of zero
crossings per signal vector which were detected during the period of the last
signal vector.

Out right outlet: A click (impulse) whose volume is set by argument or by
the set message is sent out the right outlet whenever a zero crossing is
detected.

Examples

Use zerox~ to count zero-crossings on an input signal

Detect zero
crossings zerox~

453

See Also

change~ Report signal direction
edge~ Detect logical signal transitions
spike~ Report zero to non-zero signal transitions

Linked list
function editor zigzag~

454

The zigzag~ object is similar to line~. While the line~ object’s stack-based implementation
does not retain information after it has been output, zigzag~ uses a linked list
implementation. In addition to simply remembering the current “line”, the zigzag~ object lets
you modify the list by inserting, deleting, or appending points.

Each element in the zigzag~ object’s linked list has a value (y), and a transition time value
(delta-x), which specifies the amount of time over which the transition from one value to
another will occur. When zigzag~ contains a list, this list can be triggered (the starting and
ending points can be set and changed), traversed forwards or backwards at different speeds,
and looped. The current position in the list can be jumped to, and also held.

Input

mode The word mode, followed by a number in the range 0-3, specifies the way that
the zigzag~ object responds to messages and signal values. The modes of
operation are summarized below:

mode 0 is the default mode of operation. When the zigzag~ object receives a
bang, it will jump to the start point (or end point if our direction is negative)
and begin outputting values from there. The time value associated with this
jump has its length defined by the bangdelta message. The default value for
bangdelta is 0. If a signal is connected to the left inlet of the zigzag~ object in
this mode, the current index of the list is determined by the signal; any
previously set speed, loopmode, start, and end messages are ignored.

mode 1 behavior for the zigzag~ object is exactly the same as in mode 0 in
terms of the effect of a bang. In mode 1, signal inputs are handled differently.
If a signal is connected to the left inlet of the zigzag~ object in mode 1, the
input signal functions as a trigger signal; when the slope of the input signal
changes from non-negative to negative, the object will be retriggered as
though a bang were received.

mode 2 sets the zigzag~ object to jump to the next index in the list (or the
previous index, if the current direction is negative) and begin outputting
values from there. The time value associated with this jump has its length
defined by the bangdelta message. The default value for bangdelta is 0. If a signal is
connected to the left inlet of the zigzag~ object in mode 2, the input signal
functions as a trigger signal; when the slope of the input signal changes from
non-negative to negative, the object will be retriggered as though a bang were
received.

Linked list
function editor zigzag~

455

bang In left inlet: The zigzag~ object responds to a bang message according to its
mode of behavior, which is set using the mode message.

If the zigzag~ object is set to mode 0 or mode 1, a bang message will cause the
zigzag~ object to go to the start point (or end point if the direction is negative)
and begin outputting values from there.

If the zigzag~ object is set to mode 2, a bang message will cause the zigzag~
object to jump to the next index in the list (or the previous index, if the
current direction is negative) and begin outputting values from there.

signal In left inlet: The zigzag~ object responds to signal values according to its mode
of behavior, which is set using the mode message.

If the zigzag~ object is set to mode 0, the current index of the list is determined
by the input signal value; any previously set speed, loopmode, start, and end
messages will be ignored.

If a signal is connected to the left inlet of the zigzag~ object in mode 1, the
input signal functions as a trigger signal; when the slope of the input signal
changes from non-negative to negative, the object will be retriggered as
though a bang were received.

If a signal is connected to the left inlet of the zigzag~ object in mode 2, the
input signal functions as a trigger signal; when the slope of the input signal
changes from non-negative to negative, the object will be retriggered as
though a bang were received.

signal In right inlet: A signal value specifies the rate at which the value and time pairs
will be output. A value of 1.0 traverses the list forward at normal speed. A
playback rate of –1 traverses the list backwards (i.e. in reverse). A signal value
of .5 traverses the linked list at half the normal speed (effectively doubling the
delay time values). The value of the input signal is sampled once per input
vector. Therefore, any periodic frequency modulation with a period which is
greater than the current sample rate/(2*vector_size) will alias.

float In left inlet: Each element in the zigzag~ object’s linked list is a pair that
consists of a target value (y), followed by a second number that specifies a total
amount of time in milliseconds (delta-x). In that amount of time, numbers
are output regularly in a line from the current index value to the target value.
The list 0 0 3.5 500 10 1000 describes a line which begins with a value of 0 at time
0, rises to a value of 3.5 a half second later, and rises again to a value of 10 in 1
second.

Linked list
function editor zigzag~

456

int In left inlet: Converted to float.

int or float In right inlet: Specifies the rate at which the value and time pairs will be
output. A value of 1.0 traverses the list forward at normal speed. A playback
rate of –1 traverses the list backwards (i.e. in reverse). A value of .5 traverses
the linked list at half the normal speed (effectively doubling the delay time
values).

append In left inlet: The word append, followed by an int which specifies a position
(where 0 is the first element) and a list, will insert new event pair(s) after the
index specified. The message append 0 5 500 will create a new second entry in the
linked list (at the 0 index) with a value of 5 and a time of 500 milliseconds.

bangdelta In left inlet: The word bangdelta, followed by a float or int, specifies the time over
which the transition between values occurs when the zigzag~ object receives a
bang. The default is 0 (i.e., and immediate transition).

bound In left inlet: The word bound, followed by two numbers which specify start and
end indices (where 0 is the first element), sets the start and end points of the
zigzag~ object’s linked list.

delete In left inlet: The word delete, followed by an int which specifies a position
(where 0 is the first element), will delete the value and time pair associated
with that index from the list. A list can follow the delete message if you want to
remove multiple event pairs from the list. The message delete 0 will remove the
current first value and time pair from the list; the second value and time pair
(i.e. the value and time pair at index 1) will now become the first values in the
list.

dump In left inlet: The word dump will cause a list consisting of all currently stored
value and time pairs in the form

index target value delta-x

to be sent out the zigzag~ object’s 3rd outlet.

end In left inlet: The word end, followed by an int which specifies a position (where
0 is the first element), sets the point at which the zigzag~ object ceases its
output when triggered by a bang.

insert In left inlet: The word insert, followed by an int which specifies a position (where
0 is the first element) and a list, will insert new event pair(s) before the index

Linked list
function editor zigzag~

457

specified. The message insert 0 5 500 will create a new first entry in the linked list
(at the 0 index) with a value of 5 and a time of 500 milliseconds.

jump In left inlet: The word jump, followed by an int which specifies a position (where
0 is the first element), skips to that point in the linked list and begins
outputting value and time pairs from that point. An optional int can be used
to specify the time, in milliseconds, over which the transition to the next value
will occur (the default value is 0).

jumpend In left inlet: The word jumpend causes the zigzag~ object to immediately jump
forward to the last value (y)on the linked list.

jumpstart In left inlet: The word jumpstart causes the zigzag~ object to immediately jump
to the first value (y)on the linked list and then output the currently selected
list or selected portion of the list.

loopmode The word loopmode, followed by 1, turns on looping. loopmode 0 turns off
looping. By default, looping is off. loopmode 2 turns on looping in “pendulum”
mode, in which the value and time pairs are traversed in an alternating
forward and reverse direction. By default, looping is off

next In left inlet: The word next skips to the next value and time pair in the linked
list. An optional int can be used to specify the time over which the transition to
the next value will occur (the default value is 0).

prev In left inlet: The word prev skips to the previous value and time pair in the
linked list. An optional int can be used to specify the time over which the
transition to the previous value will occur (the default value is 0).

print In left inlet: The word print causes the current status and contents of the
zigzag~ object to be printed out in the Max window. The output consists of the
current mode, loopmode, the start, end, and loop length of the current list, the
pendulum state, and moving value of the object, followed by a listing of each
index in the linked list, along with its y and delta-x values.

ramptime In left inlet: The word ramptime, followed by a number, sets the ramp time, in
milliseconds, at which the output signal will arrive at the target value.

setindex In left inlet: The word setindex, followed by an int which specifies a position
(where 0 is the first element) and a pair of floats, sets the target value (y) and
transition time amounts (delta-x) for the specified position in the list.

Linked list
function editor zigzag~

458

skip In left inlet: The word skip, followed by a positive or negative number, will skip
the specified number of indices in the zigzag~ object’s linked list. Positive
number values skip forward, and negative values skip backward. An optional
int can be used to specify the time over which the transition to the next or
previous value will occur (the default value is 0).

speed In left inlet: The word speed, followed by a positive or negative floating-point
number, specifies the rate at which the value and time pairs will be output. The
message speed 1.0 traverses the list forward at normal speed, speed –1 traverses
the list backwards, speed .5 traverses the linked list at half the normal speed
(effectively doubling the delay time values).

start In left inlet: The word start, followed by an int which specifies a position (where
0 is the first element), sets the point at which the zigzag~ object begins its
output when triggered by a bang.

Arguments

int or float Optional. Sets an initial target value (y) for the zigzag~ object.

Output

signal Out 1st outlet: The current target value, or a ramp moving toward the target
value according to the currently stored value and the target time.

Out 2nd outlet: The current delta-x value.

list Out 3rd outlet: In response to the dump message, a list consisting of all
currently stored value and time pairs in the form

index target value (y) delta-x

is output.

bang Out right outlet: When looping, a bang message is sent out when the loop
(retrigger) point is reached. A bang is also sent out when zigzag~ has finished
generating all of its ramps.

Linked list
function editor zigzag~

459

Examples

zigzag~ can be used as a multi-purpose, editable ramp generator

See Also

adsr~ ADSR envelope generator
curve~ Exponential ramp generator
kink~ Distort a sawtooth waveform
line~ Linear ramp generator

Graph filter poles and zeros on
the Z-plane zplane~

460

The zplane~ object, like the filtergraph~ object, does not process audio signals by itself, but
it does react internally to the current MSP sampling rate. It provides a way to graph filter
poles and zeros in the Z-plane for display. You can use the zplane~ object in conjunction
with the filtergraph~ object, or provide it with a list of biquad coefficients. The zplane~
object is designed to help in digital filter design and visualization for MSP, and to provide
a basic pedagogical tool which may be used to help explain digital filter theory.

Input

(mouse) You can changer the filter parameters by clicking and dragging on the
zplane~ object’s display. Clicking and dragging on any of the poles (shown
as an x in the display) or zeros (shown as an o in the display) will modify
the filter coefficients and output the new filter coefficient values.

list In left inlet: A list of five float values which correspond to biquad~ filter
coefficients sets the zplane~ object’s internal values for these coefficients
and causes the object to visuallydisplay the poles and zeros for the filter(s)
and to output the pole and zero data.

If more than five values are sent, they are interpreted as sets of cascaded
biquad coefficients. The zplane~ object will display a composite pole-zero
graph which shows the multiplication of a group of biquad filters in
cascade. Up to 24 groups of five float values may be cascaded.

float In 1st-5th inlets: A float in one of the first five inlets changes the current
value of the corresponding biquad~ filter coefficients (a0, a1, a2, b1, and
b2, respectively), recalculates and displays the filter’s pole-zero graph on
the Z-plane and causes a lists of poles and zeros be output.

int Converted to float.

bang Causes the current pole and zero values to be re-output.

pconstrain The word pconstrain, followed by a the number 1 will cause poles to be
constrained inside the unit circle, and thus yield a stable filter. An
argument of zero will turn this feature off (it is off by default).

Arguments

None.

Graph filter poles and zeros on
the Z-plane zplane~

461

Output

list Out left outlet: a list of 5 floating-point filter coefficients for the biquad~
object. Coefficients output in response to mouse clicks and changes in the
coefficient inlets.

Out second outlet: a list of “zero” location values expressed as complex
numbers (real, imaginary). These correspond to the “a” coefficients of the
filter. A 2nd order (biquad) filter will have 2 zeros, a 4th order filter will
have four, etc…

Out third outlet: a list of “pole” location values expressed as complex
numbers (real, imaginary). These correspond to the “b” coefficients of the
filter. A 2nd order (biquad) filter will have 2 zeros, a 4th order filter will
have four, etc…

Out fourth outlet: a list of floating-point values representing the overall
gain of each cascaded filter.

Examples

Anyone for a game of Tic-Tac-Toe??

Graph filter poles and zeros on
the Z-plane zplane~

462

See Also

biquad~ Two-pole, two-zero filter
cascade~ A set of cascaded biquad filters
filtercoeff~ Signal-rate filter coefficient generator
filtergraph~ Graphical filter editor

MSP Object Thesaurus

463

4-band Compressor omx.4band~
5-band Compressor omx.5band~
Absolute value of all samples in a signal abs~
Access audio driver output channels adoutput~
Accumulator (signal) +=~
Adding signals together +~
Additive synthesis +~, cycle~
ADSR envelope generator adsr~
AIFF saving and playing buffer~, info~, sfplay~,

sfrecord~
Aliasing dspstate~
Amplification *~, /~, gain~, normalize~
Amplitude indicator avg~, meter~
Amplitude modulation *~
Analog-to-digital converter adc~, ezadc~
Analysis of a signal capture~, fft~, scope~
Antialiased oscillators rect~, saw~, tri~
Arc-cosine function for signals acos~
Arc-sine function for signals asin~
Arc-tangent function for signals (two variables) atan2~
Arc-tangent function for signals atan~
Arithmetic operators for signals acos~, acosh~, asin~, asinh~,

atan~, atanh~, atan2~, cos~,
cosh~, cosx~, sinh~, sinx~,
tanh~, tanx~

Audio driver output channel access adoutput~
Audio driver settings, reporting and controlling adstatus
Average signal amplitude avg~
Backward sample playback groove~, play~
Bandpass filter noise~, pink~, rand~, reson~
Bit shifting for floating-point signals bitshift~
Bitwise “and” of floating-point signals bitand~
Bitwise “exclusive or” of floating-point signals bitxor~
Bitwise “or” of floating-point signals bitor~
Bitwise inversion of a floating-point signal bitnot~
buffer~ viewer and editor waveform~
Buffer-based FIR filter buffir~
Bypassing a signal gate~, mute~, pass~, selector~
Cartesian to Polar coordinate conversion (signal) cartopol~

MSP Object Thesaurus

464

Cascaded series of biquad filters cascade~
Chorusing cycle~, tapout~
Clipping clip~, dac~, normalize~
Comb filter with feedforward and feedback delay control teeth~
Comb filter comb~
Compare two signals, output the maximum maximum~
Compare two signals, output the minimum minimum~
Comparing signals <~, ==~, >~, change~,

meter~, scope~, snapshot~
Compressor omx.comp~
Compressors omx.4band~, omx.5band~,

omx.comp~
Compute “running phase” of successive phase deviation
frames

frameaccum~

Compute phase deviation between successive FFT frames framedelta~
Compute the minimum and maximum values of a signal minmax~
Configure the behavior of a plug-in plugconfig
Constant signal value sig~
Control audio driver settings adstatus
Control function curve~, function, line~
Control poly~ voice allocation and muting thispoly~
Control ReWire host’s transport hostcontrol~
Convert a deciBel value to linear amplitude at signal rate dbtoa~
Convert frequency to MIDI note numbers at signal-rate ftom~
Convert linear amplitude to a signal-rate deciBel value atodb~
Convert Max messages to signals adsr~, curve~, line~, peek~,

poke~, sig~
Convert signals to Max messages avg~, meter~, peek~,

snapshot~
Cosine function for signals (0-1 range) cos~
Cosine function for signals cosx~
Cosine wave cos~, cycle~
Create an impulse click~
DC offset +~, -~, number~, sig~
Define a plug-in parameter pp
Define a plug-in’s audio inputs plugin~
Define a plug-in’s audio outputs plugout~
Define a time-based plug-in parameter pptime
Define multiple plug-in parameters plugmultiparam
Define plug-in tempo and sync parameters pptempo
Delay allpass~, comb~, delay~,

tapin~, tapout~

MSP Object Thesaurus

465

tapin~, tapout~
Difference between samples change~, delta~
Difference between signals -~, scope~
Digital-to-analog converter dac~, ezdac~
Disabling part of a signal network gate~, mute~, pass~, selector~
Display signal value capture~, meter~, number~,

scope~, snapshot~
Divide two signals, output the remainder %~
Downsampling avg~, degrade~, number~,

poly~, sah~, snapshot~
Duty cycle of a pulse wave <~, >~, train~
Editing an audio sample record~, peek~, poke~
Envelope follower, vector-based vectral~
Envelope following adc~, ezadc~, function, line~
Envelope generator adsr~, curve~, function, line~,

techno~
Equalization allpass~, biquad~, comb~,

lores~, reson~
Exponential curve function curve~, gain~, linedrive, pow~,

techno~
Fast fixed filter bank fffb~
Feedback delayed signal allpass~, biquad~, comb~,

lores~, reson~, tapin~, tapout~
Filter a signal logarithmically slide~
Filter allpass~, biquad~, buffir~,

comb~, lores~, noise~, pink~,
reson~, svf~, vst~

FIR filter, buffer-based buffir~
Flanging cycle~, tapout~
Fourier analysis and synthesis fft~, ifft~, pfft~
Frequency domain frequency shifter for pfft~ fbinshift~
Frequency domain pitch shifter for pfft~ gizmo~
Frequency modulation +~, cycle~, phasor~
Frequency shifter freqshift~,fbinshift~
Frequency-to-pitch conversion ftom
Function generator adsr~, curve~, function, line~,

peek~, poke~, techno~
Generate parameter values from programs plugmorph
Get synchronization signal from a ReWire host hostphasor~
Get transport control info from a ReWire host hostsync~
Global signal values receive~, send~

MSP Object Thesaurus

466

Graph filter poles and zeros on the Z-plane zplane~
Graphical filter editor filtergraph~
Hertz equivalent of a MIDI key number ftom, mtof
Host ReWire devices rewire~
Host-synchronized sawtooth wave plugphasor~
Hyperbolic arc-cosine function for signals acosh~
Hyperbolic arc-sine function for signals asinh~
Hyperbolic arc-tangent function for signals atanh~
Hyperbolic cosine function for signals cosh~
Hyperbolic sine function for signals sinh~
Hyperbolic tangent function for signals tanh~
IIR filter allpass~, biquad~, comb~,

lores~, reson~, svf~
Impulse generator click~
Input for a patcher loaded by pfft~ fftin~
Input for a patcher loaded by poly~ (message) in
Input for a patcher loaded by poly~ (signal) in~
Input received in audio input jack adc~, ezadc~
Interpolating oscillator bank ioscbank~
Inverting signals *~, -~
Is greater than or equal to, comparison of two signals >=~
Is less than or equal to, comparison of two signals <=~
Java in MSP mxj~
Level control *~, /~, gain~, normalize~
Level indicator levelmeter~
Level meter meter~, number~
Limit changes in signal amplitude deltaclip~
Limiter clip~, lookup~
Linked list function editor zigzag~
Logarithmic curve function curve~, gain~, linedrive, log~,

pow~, sqrt~, techno~
Logical operations using signal values <~, ==~, >~, edge~
Lookup table buffer~, cycle~, function,

index~, lookup~, peek~, wave~
Loop points in a sound file info~
Looping a sample 2d.wave~, groove~, info~,

wave~
Lowpass filter lores~, noise~, pink~, rand~,

svf~
Max messages converted to signals curve~, line~, peek~, poke~,

sig~

MSP Object Thesaurus

467

Max messages derived from signals avg~, edge~, meter~, number~,
peek~, snapshot~

Message input for a patcher loaded by poly~ in
Message output for a patcher loaded by poly~ out
MIDI control from MSP avg~, ftom, function, number~,

snapshot~
MIDI control of MSP curve~, line~, mtof, sig~
Millisecond calculations mstosamps~, sampstoms~
Mixing signals +~
Modify plug-in parameter values plugmod
Multi-mode signal average average~
Multiple plug-in parameter definition plugmultiparam
Multiplying signals *~
Noise gate gate~
Noise noise~, pink~, rand~
Non-interpolating oscillator bank oscbank~
Normalization *~, /~, normalize~
Not equal to, comparison of two signals !=~
Numerical display of a signal capture~, number~, snapshot~
On/off audio switch adc~, dac~, dspstate~, ezadc~,

ezdac~
Oscillator bank ioscbank~, oscbank~
Oscillators 2d.wave~, cycle~, phasor~,

wave~, rect~, saw~, tri~
Oscillators, antialiasing rect~, saw~, tri~
Oscilloscope scope~
Output audio jack dac~, ezdac~
Output for a patcher loaded by pfft~ fftout~
Output for a patcher loaded by poly~ (message) out
Peak amplitude meter~
Peak Limiter omx.peaklim~
Periodic waves 2d.wave~, cycle~, phasor~,

techno~, wave~
Phase distortion synthesis kink~, phasor~
Phase modulation phasor~
Phase quadrature filter hilbert~
Phase shifter phaseshift~
Pink noise generator pink~
Pitch bend ftom, mtof
Pitch shifter for pfft~ gizmo~
Pitch-to-frequency conversion mtof

MSP Object Thesaurus

468

Playing audio dac~, ezdac~
Playing samples 2d.wave~, buffer~, groove~,

index~, play~, sfplay~,
techno~, wave~

Plug-in audio inputs definition plugin~
Plug-in audio outputs definition plugout~
Plug-in development tools plugconfig, plugin~, plugmod,

plugmorph, plugmultiparam,
plugout~, plugphasor~,
plugreceive~, plugsend~,
plugstore, plugsync~, pp,
pptempo, pptime

Plug-in in VST format used in MSP vst~
Plug-in parameter definition pp
Plug-in tempo and sync parameters definition pptempo
Polar to Cartesian coordinate conversion (signal) poltocar~
Polyphony management in, in~, out, out~, poly~,

thispoly~
Polyphony/DSP manager for patchers poly~
Pulse wave <~, >~, clip~, train~
Ramp signal curve~, line~
Random signal values noise~, pink~, rand~
Receive audio from another plug-in plugreceive~
Recording audio samples adc~, ezadc~, poke~, record~,

sfrecord~
Remainder (signal) %~
Repetition at sub-audio rates cycle~, phasor~, techno~,

train~
Report and control audio driver settings adstatus
Report host synchronization information plugsync~
Report information about for a patcher loaded by pfft~ fftinfo~
Report intervals of zero to non-zero transitions spike~
Report milliseconds of audio processed dsptime~
Resonant filter allpass~, biquad~, comb~,

lores~, reson~, svf~
Reverberation allpass~, comb~, tapin~,

tapout~
Reversed sample playback groove~, play~
ReWire device hosting rewire~
Ring modulation *~
Sample and hold sah~

MSP Object Thesaurus

469

Sample index in a buffer count~, index~
Sample playback 2d.wave~, buffer~, groove~,

index~, play~, sfplay~,
techno~, wave~

Sample storage buffer~, record~, sfrecord~
Sampling rate adc~, buffer~, count~, dac~,

dspstate~, mstosamps~,
sampstoms~

Sawtooth oscillator phasor~
See the maximum amplitude of a signal peakamp~
Send audio to another plug-in plugsend~
Signal accumulator (signal) +=~
Signal arithmetic operators acos~, acosh~, asin~, asinh~,

atan~, atanh~, atan2~, cos~,
cosh~, cosx~, sinh~, sinx~,
tanh~, tanx~

Signal capture and granular oscillator stutter~
Signal comparison, output the maximum maximum~
Signal comparison, output the minimum minimum~
Signal division (inlets reversed) !/~
Signal folding, variable range pong~
Signal input for a patcher loaded by poly~ in~
Signal mixing matrix matrix~
Signal output for a patcher loaded by poly~ out~
Signal quality reducer degrade~
Signal remainder %~
Signal routing matrix matrix~
Signal spectrogram or sonogram spectroscope~
Signal subtraction (inlets reversed) !-~
Signal tangent function (signal) tanx~
Signal-driven sequencer techno~
Sine function for signals sinx~
Sine wave cos~, cycle~
Single-pole lowpass filter onepole~
Sonogram spectroscope~
Smooth an incoming signal rampsmooth~
Soft-clipping signal distortion overdrive~
Sound Designer II saving and playing (Macintosh only) buffer~, info~, sfplay~,

sfrecord~
Spectral domain processing cartopol~, fftin~, fftinfo~,

fftout~, frameaccum~,
framedelta~, pfft~,
phasewrap~, poltocar~,
vectral~

MSP Object Thesaurus

470

framedelta~, pfft~,
phasewrap~, poltocar~,
vectral~

Spectral-processing manager for patchers pfft~
Spectrogram spectroscope~
Spectrum measurement fft~, ifft~, pfft~
Start and end point of a sample 2d.wave~, groove~, index~,

play~, wave~
State-variable filter with simultaneous outputs svf~
Store multiple plug-in parameter values plugstore
Subpatch control mute~, receive~, send~
Subtractive synthesis allpass~, biquad~, comb~,

lores~, noise~, pink~, rand~,
rect~, reson~, saw~, tri~

Switching signal flow on and off gate~, mute~, pass~, selector~
Synchronize MSP with an external source sync~
Table lookup buffer~, cycle~, function,

index~, lookup~, peek~, wave~
Tangent function for signals tanx~
Text file of signal samples capture~
Time-based plug-in parameter definition pptime
Time-domain frequency shifter freqshift~
Transfer function cycle~, lookup~
Transient detector zerox~
Trapezoidal wavetable trapezoid~
Triangle/ramp wavetable triangle~
Triggering a Max message with an audio signal edge~, thresh~
Trigonometric operators for signals acos~, acosh~, asin~, asinh~,

atan~, atanh~, atan2~, cos~,
cosh~, cosx~, sinh~, sinx~,
tanh~, tanx~

Truncate the fractional part of a signal trunc~
Two-dimensional wavetable 2d.wave~
Variable range signal folding pong~
Varispeed sample playback groove~, play~
Vector size adc~, dac~, dspstate~
Vector-based envelope follower vectral~
Velocity (MIDI) control of a signal adsr~, curve~, gain~, line~,

sig~
View a signal buffer~, capture~, number~,

scope~, snapshot~

MSP Object Thesaurus

471

Visual RMS level indicator levelmeter~
Waveshaping lookup~
Wavetable synthesis 2d.wave~ buffer~, cycle~,

wave~
Wavetables trapezoid~, triangle~
White noise noise~
Windowing a portion of a signal index~, cycle~, gate~, lookup~,

techno~, wave~
Wrap a signal between -! and ! phasewrap~
Zero-cross counter zerox

Index

472

!/~, 6
!-~, 5
!=~, 8
%~, 10
*~, 12
/~, 17
-~, 13
+~, 14
+=~, 16
<~, 19
<=~, 21
==~, 23
>=~, 27
2d.wave~, 29
abs~, 32
absolute value, 32
acos~, 33
adc~, 35
adding signals together, 14
adoutput~, 37, 39
adstatus, 42
AIFF, 76
allpass~, 49
amplification, 12, 164, 228
amplitude envelope, 198
amplitude-to-deciBel conversion, 56
analog-to-digital conversion, 35, 123
asin~, 51, 52
atan~, 54
atan2~, 53
atanh~, 55
atodb~, 56
audio click track, 408
audio input, 35, 123
audio output, 109, 125
audio processing off for some objects, 60,

167, 366
average~, 57
avg~, 59

band-limited noise, 339
bandpass filter, 348, 406
begin~, 60
biquad~, 61
bitand~, 63
bitnot~, 66
bitor~, 68
bitshift~, 71
bitwise and, 63, 66
bitwise operators

&, 63
bitnot~, 66

bitwise or, 68, 71, 73
bitxor~, 73
bold type, displaying numbers in, 232
buffer~, 75
buffir~, 81
capture~, 84
cartopol~, 86
cascade~, 88
change~, 90
click~, 91
client, ReWire, 350
clip~, 92
comb filter, 93, 415, 418
comb~, 93
comparing signal values, 8, 19, 21, 23, 27,

210, 216, 422
cos~, 95
cosh~, 34, 97
cosine wave, 95, 98, 106
cosx~, 98
count~, 100
cross~, 102
crossover filter, 102
curve~, 104
dac~, 109
dbtoa~, 111
DC offset, 13, 14, 230, 389

Index

473

decibels, 165
deciBel-to-amplitude conversion, 111
degrade~, 112
delay, 114
delay line, 114, 412, 413
delay~, 114
delta~, 116, 160
deltaclip~, 117
digital-to-analog converter, 125
display signal, 362, 396
display signal amplitude, 195, 207, 212,

394
display signal as text, 84
display the value of a signal, 230
divide one signal by another, 6, 17
downsamp~, 118
dspstate~, 119
dsptime~, 121
duty cycle, 424
edge~, 122
envelope generator, 57, 81, 112, 190, 198,

218, 253, 263, 271, 273, 314, 320, 337,
340, 392, 403, 433, 442, 454

equal to comparison, 8, 23
equalization, 49, 61, 88, 93, 145, 205, 251,

348, 406, 415, 418
exponential curve, 104, 165, 200
ezadc~, 123
ezdac~, 125
fbinshift~, 127
fffb~, 129
fft~, 132
fftin~, 134
fftinfo~, 137
fftout~, 139
file search path of Max, 76, 372, 374, 380
file, record AIFF, 386
filter

allpass, 49
comb, 93, 415, 418
crossover, 102

highpass, 102
lowpass, 102, 205
resonant bandpass, 348, 406
two-pole two-zero, 61, 88, 251

filter design, 460
filtercoeff~, 141
filtergraph~, 145
flange, 93, 415, 418
float-to-signal conversion, 230, 389
Fourier synthesis, 180
Fourier transform, 132
frameaccum~, 158
framedelta~, 160
freqshift~, 161
frequency-to-MIDI conversion, 163
ftom~, 163
gain~, 164
gate~, 167
gizmo~, 169
greater than comparison, 27, 210
groove~, 171
highpass filter, 102
hilbert~, 174
hostcontrol~, 175
hostphasor~, 177
hostsync~, 178
ifft~, 180
in, 182
in~, 184
index~, 186
info~, 188
input, 35, 123
interpolation, 106, 198, 230
inverse fast Fourier transform, 180
ioscbank~, 190
Java in MSP, 225
kink~, 193
less than comparison, 19, 21, 216
level meter, 195, 207, 212
levelmeter~, 195

Index

474

limiting amplitude of a signal, 92, 117,
228

line~, 198
linedrive, 200
log~, 202
logarithmic curve, 104, 165, 200, 202
logical signal transitions, 122
lookup table, 203, 265
lookup~, 203
loop an audio sample, 171
lores~, 205
lowpass filter, 102, 205
lowpass filtered noise, 339
masking, 63, 66
matrix~, 207
maximum~, 210
meter~, 212
metronome, 424
MIDI beat clock, 408
MIDI note value, 163
MIDI-to-amplitude conversion, 164
MIDI-to-frequency conversion, 221
minimum~, 216
minmax~, 218
mixer, ReWire, 350
mixing signals, 14
modulo, 10
MP3 file conversion for buffer~, 75
MPG3 file conversion for buffer~, 75
mstosamps~, 220
mtof~, 221
multiply one signal by another, 12
mute audio of a subpatch, 223, 262
mute~, 223
mxj~, 225
noise, 339
noise~, 227
normalize~, 228
number~, 230
number-to-signal conversion, 230, 389

on and off, turning audio, 35, 109, 123,
125

onepole~, 251
open and close a subpatch window, 420
oscbank~, 253
oscillator, 106
oscilloscope, 362
out, 256
out~, 258
output, 125
overdrive~, 260
pass~, 262
peak amplitude, 195, 207, 212
peakamp~, 263
peek~, 265
pfft~, 268
phase distortion synthesis, 193
phase modulation, 193, 274
phaseshift~, 271
phasewrap~, 273
phasor~, 274
pink noise, 276
pink~, 276
pitch-to-frequency conversion, 221
play audio sample, 37, 39, 171, 186, 277
play audio sample as waveform, 29, 439
play~, 277
plugconfig, 279
plugin~, 288
plugmidiin, 290
plugmidiout, 292
plugmod, 293
plugmorph, 295
plugmultiparam, 298
plugout~, 301
plugphasor~, 303
plugreceive~, 304
plugsend~, 306
plugstore, 307
plugsync~, 308
poke~, 310

Index

475

poltocar~, 312
poly~, 314
pong~, 320
pow~, 322
pp, 324
pp, color messages, 326, 335
pp, hidden, 325, 335
pp, text, 324
pptempo, 328
pptime, 332
pulse train, 424
pulse width, 424
Q of a filter, 205, 348, 406
QuickTime, 75
QuickTime file conversion for buffer~, 75
rampsmooth~, 337
rand~, 339
random signal, 227, 339
rate~, 340
receive~, 343
record audio, 344
record Sound Designer II, 386
record soundfile, 386
record~, 344
remainder, 10
reson~, 348
resonance of a filter, 205, 348, 406
ReWire, 350
rewire~, 350
round~, 354
routing a signal, 167
sah~, 346, 356, 360, 428
sample and hold, 346, 356, 360, 428
sample number, 100
sample stored in memory, 75
sample, read single, 37, 39, 186, 265
sample, write single, 265, 310
sample-to-millisecond conversion, 358
sampling rate, 119

of AIFF file, 188
sampstoms~, 358

sawtooth wave, 274
scope~, 362
search path, 76, 372, 374, 380
selector~, 366
send~, 368
seq, 369
sfinfo~, 372
sflist~, 374
sfplay~, 378
sfrecord~, 386
sig~, 389
signal of constant value, 230, 389
signal-to-float conversion, 230, 394
sine wave, 106
sinh~, 390
sinx~, 391
slide~, 392
snapshot~, 394
sonogram, 396
sound, 188
sound input, 35, 123
sound output, 125
spectrogram, 396
spectroscope~, 396
spike~, 400
sqrt~, 402
square root of signal value, 402
stutter~, 403
subpatch

opening the window of, 420
subpatch, mute audio of, 223
svf~, 406
switch, 366
sync~, 408
synchronizing MSP, 408
tanh~, 410
tanx~, 411
tap tempo reference, 408
tapin~, 412
tapout~, 413
teeth~, 415, 418

Index

476

temperament, equal, 221
text, viewing a signal as, 84
thispoly~, 420
thresh~, 422
threshold detection, 422
train~, 424
transfer function, 203
trapezoid~, 426
triangle~, 430
trunc~, 432
tuning, equal temperament, 221
variable speed sample playback, 171, 277

vector size, 119
vectral~, 433
velocity-to-amplitude conversion, 164
vst~, 435
wave~, 439
waveform~, 442
wavetable synthesis, 29, 107, 439
white noise, 227
zerox~, 452
zigzag~, 454
zplane~, 460

	Introduction
	!-~
	!/~
	!=~
	%~
	/~
	<~
	<=~
	==~
	>~
	>=~
	2d.wave~
	abs~
	acos~
	acosh~
	adc~
	adoutput~
	adsr~
	adstatus
	asin~
	asinh~
	atan2~
	atan~
	atanh~
	atodb~
	average~
	begin~
	biquad~
	bitand~
	bitnot~
	bitor~
	bitshift~
	bitxor~
	buffir~
	capture~
	cartopol~
	cascade~
	cos~
	cosh~
	cosx~
	cross~
	curve~
	cycle~
	dbtoa~
	degrade~
	delay~
	delta~
	deltaclip~
	downsamp~
	dspstate~
	dsptime~
	edge~
	ezadc~
	ezdac~
	fbinshift~
	fffb~
	fftin~
	fftinfo~
	fftout~
	filtercoeff~
	filtergraph~
	frameaccum~
	framedelta~
	freqshift~
	ftom~
	gain~
	gate~
	gizmo~
	groove~
	hilbert~
	hostcontrol~
	hostphasor~
	hostsync~
	ifft~
	in
	in~
	index~
	info~
	ioscbank~
	kink~
	levelmeter~
	linedrive
	lookup~
	lores~
	matrix~
	maximum~
	meter~
	minimum~
	minmax~
	mstosamps~
	mtof~
	mute~
	normalize~
	number~
	omx.4band~
	omx.5band~
	omx.comp~
	omx.peaklim~
	onepole~
	oscbank~
	out
	out~
	overdrive~
	pass~
	peakamp~
	peek~
	pfft~
	phasewrap~
	play~
	plugconfig
	plugin~
	plugmidiin
	plugmidiout
	plugmod
	plugmorph
	plugmultiparam
	plugout~
	plugphasor~
	plugreceive~
	plugsend~
	plugstore
	plugsync~
	poke~
	poltocar~
	poly~
	pong~
	pp
	pptempo
	pptime
	rampsmooth~
	rand~
	rate~
	receive~
	record~
	rect~
	round~
	sah~
	sampstoms~
	saw~
	selector~
	send~
	seq~
	sfinfo~
	sflist~
	sfplay~
	sfrecord~
	sig~
	sinh~
	sinx~
	slide~
	snapshot~
	spike~
	sqrt~
	stutter~
	svf~
	sync~
	tanh~
	tanx~
	tapin~
	tapout~
	teeth~
	thispoly~
	thresh~
	train~
	trapezoid~
	tri~
	triangle~
	trunc~
	vectral~
	vst~
	wave~
	waveform~
	zerox~
	zigzag~
	zplane~
	MSP Object Thesaurus
	Index

