
1

MAX

Tutorial
Version 4.6/7 August 2006

2

Copyright and Trademark Notices

This manual is copyright © 2000-2006 Cycling ’74.

Max is copyright © 1990-2006 Cycling ’74/IRCAM, l’Institut de Recherche et
Coördination Acoustique/Musique.

Credits

Original Max Documentation: Chris Dobrian

Max 4.6 Reference Manual: David Zicarelli, Gregory Taylor, Joshua Kit Clayton, jhno,
Richard Dudas, Ben Nevile

Max 4.6 Tutorial: David Zicarelli, Gregory Taylor, Jeremy Bernstein, Adam Schabtach,
Richard Dudas, R. Luke DuBois

Max 4.6 Topics Manual: David Zicarelli, Gregory Taylor

Cover Design: Lilli Wessling Hart

Graphic Design: Gregory Taylor

Table of Contents

3

Introduction ...5
Tutorial 1: Saying “Hello!” ..7
Tutorial 2: The bang Message.. 13
Tutorial 3: About Numbers.. 15
Tutorial 4: Using metro .. 17
Tutorial 5: toggle and comment .. 19
Tutorial 6: Test 1—Printing ... 22
Tutorial 7: Right-to-left Order ... 23
Tutorial 8: Doing Math in Max ... 26
Tutorial 9: Using the slider.. 30
Tutorial 10: Number Boxes ... 33
Tutorial 11: Test 2—Temperature Conversion .. 38
Tutorial 12: Using MIDI Data ... 42
Tutorial 13: Sending and Receiving MIDI Notes ... 47
Tutorial 14: Sliders and Dials... 51
Tutorial 15: Making Decisions with Comparisons... 56
Tutorial 16: More MIDI Ins and Outs ... 62
Tutorial 17: Gates and Switches .. 67
Tutorial 18: Test 3—Comparisons and Decisions ... 72
Tutorial 19: Screen Aesthetics ... 75
Tutorial 20: Using the Computer Keyboard ... 82
Tutorial 21: Storing Numbers .. 89
Tutorial 22: Delay Lines .. 96
Tutorial 23: Test 4—Imitating a Performance .. 101
Tutorial 24: send and receive .. 105
Tutorial 25: Managing Messages ... 107
Tutorial 26: The patcher Object ... 114
Tutorial 27: Your Object.. 118
Tutorial 28: Your Argument .. 123
Tutorial 29: Test 5—Probability Abstraction .. 128
Tutorial 30: Number Groups.. 134
Tutorial 31: Using Timers.. 140
Tutorial 32: The table Object... 146
Tutorial 33: Probability Tables .. 155
Tutorial 34: Managing Raw MIDI Data.. 160
Tutorial 35: seq and follow ... 171

Table of Contents

4

Tutorial 36: Multi-track Sequencing... 180
Tutorial 37: Data Structures.. 185
Tutorial 38: exp and if .. 198
Tutorial 39: Mouse Control.. 204
Tutorial 40: Automatic Actions .. 208
Tutorial 41: Timeline of Max Messages... 213
Tutorial 42: Graphics .. 226
Tutorial 43: Graphics in a Patcher .. 233
Tutorial 44: Sequencing with detonate .. 244
Tutorial 45: Designing the User Interface ... 255
Tutorial 46: Basic Scripting ... 265
Tutorial 47: Advanced Scripting... 279
Tutorial 48: Basic JavaScript ... 288
Tutorial 49: Scripting and Custom Methods in JavaScript ... 300
Tutorial 50: Tasks, Arguments and Global Objects in JavaScript... 317
Tutorial 51: Designing User Interfaces in JavaScript... 328
Tutorial 52: Patcher Storage ... 345
Tutorial 53: More Patcher Storage ... 354

5

Introduction
This manual is a step-by-step course designed to teach you all about Max, beginning with
the simplest concepts and building upon those concepts as you learn new ones. The
course is primarily for new Max users who don’t have prior programming experience, but
even if you have some knowledge of programming, the Tutorial is a good way to learn
Max.

The tutorials are designed to be read in order. Each Tutorial is accompanied by a sample
Max program (document) in the Max Tutorial folder. The document is a working
illustration of the concepts in the chapter text—it lets you see Max in action and try
things yourself. We feel this hands- on approach is a more efficient way to learn about
Max than just reading the manual by itself.

By the time you have completed the tutorials, you will have a good understanding of Max
and its capabilities, and will probably also have many ideas for your own Max
applications.

As you read each tutorial, you can open the corresponding Max document in the Max
Tutorial folder. Some of the tutorials take the form of “quizzes” so you can be sure you
understand the material before proceeding. At the end of each Tutorial are
suggestions—labeled See Also—of other sections of the Max documentation you can
investigate in order to learn more.

If you are new to Max, we suggest you begin by reading the Setup and Overview sections
of the Fundamentals manual, then trying a few of the Tutorials. You can also learn by
looking at the help files in the max-help folder, and by browsing the Max Object
Thesaurus in the Max Reference Manual. The sample patches show some of the things
others have done with Max.

Manual Conventions

The central building block of Max is the object. Names of objects are always displayed in
bold type, like this.

Messages (the arguments that are passed to and from objects) are displayed in plain type,
like this.

In the See Also sections, anything in regular type is a reference to a section of either this
manual or the Reference manual.

Introduction

6

MIDI Equipment

The first few tutorials in this manual do not deal with MIDI directly, but simply teach you
about some of the elements of Max. Later tutorials do involve MIDI quite extensively,
though, and in the sample programs we make certain assumptions about what MIDI
equipment you are using and how it is connected to the computer. In order to benefit the
most from the Tutorial, keep in mind these assumptions:

1. You are using a a 61-key velocity-sensitive keyboard with pitch bend and modulation
wheels and a polyphonic synthesizer or sampler. Your keyboard should ideally be set
to send on MIDI channel 1, and the synthesizer set to receive in Omni On mode.

2. You have connected the MIDI Out of your MIDI keyboard to the MIDI In of your
MIDI interface, and connected the MIDI Out of your interface to the MIDI In of your
synthesizer or sampler.

3. For the purpose of this Tutorial, your MIDI interface should be connected to the
modem port or the primary USB interface of your computer.

Even if your equipment doesn’t exactly match that assumed by the Tutorial, try to
emulate the assumed setup as much as possible. You may want to read the user’s manual
of your synthesizer, to be sure you understand its MIDI capabilities.

The Tutorial patches are designed for a keyboard synth with local control on—one that
makes sounds when you play, without receiving any additional MIDI in—rather than for
a keyboard controller with no built-in synth. If the keyboard and tone generator you are
using are separate, you should open the patch called thru in the Max Tutorial folder,
specify your input and output ports with the pop-up menus, and leave it open as you run
the Tutorial patches. This will route the MIDI output of your keyboard directly through
Max to your tone generator, emulating a keyboard synth.

7

Tutorial 1: Saying “Hello!”

Open Tutorial 1

• If you have not already started up the Max application, do so now by double-clicking
on the Max application icon.

• Once Max is launched, open the MIDI Setup window by choosing Midi Setup… from
the File Menu and assign the input and output devices you want to use to port
abbreviation a with a channel offset of 0.

Both the Macintosh and Windows XP provide a DLS (Downloadable Soundfont)
synthesizer for MIDI playback. If you don’t want to use any external MIDI gear, you can
drive the DLS synth directly from Max via MIDI. For more information about working
with DLS synths, see the section “Using Max with MIDI” chapter in the Fundamentals
manual.

To open the sample program for each chapter of the Tutorial, choose Open… from the
File menu and find the document in the Max Tutorial folder with the same number as the
chapter you are reading.

Tutorial 1 Saying “Hello!”

8

• Open the file called 1. Saying “Hello!”

Objects and Messages

• Click in the box marked Hello!. Notice what happens in the Max window each time you
click on Hello!.

The basic operation of a patcher program is simple. Different types of boxes, called
objects, send messages to each other through patch cords.

This program contains two different objects:

The box containing the word print is a print object. A print object prints whatever message
it receives in the Max window.

The word Hello! is a message contained in a message box, which can contain anything that
can be typed. Often a message will contain numbers.

Different kinds of objects have different numbers of inlets and outlets. The message box
always has one inlet and one outlet.

Inlets are always at the top, indicated by blackened areas at the top of an object. Outlets
are always at the bottom of an object.

The print object has no outlet—its output is always just printed in the Max window.
Usually, an object will have both inlets and outlets; it receives messages, performs some
task, then sends out messages. The print object just prints whatever it receives.

The message box is connected to the print object by means of a patch cord. Just like
components of a stereo system, the outlet of one object is connected to the inlet of
another object. You can’t connect an inlet to another inlet, or an outlet to another outlet.

Tutorial 1 Saying “Hello!”

9

The program operates as follows:

1. When you click on the message box object, the message Hello! is sent out the message
box’s outlet and through the patch cord.

2. The message reaches the inlet of the print object, which prints the message print: Hello! in
the Max window.

Locking and Unlocking a Patcher Window

A Patcher window can be in one of two states: locked or unlocked. When a Patcher
window is locked, it is a program ready to run, and you can operate the patcher by
clicking on objects (such as sliders) that do things. When it is unlocked, you can edit the
patcher by moving objects around, creating new ones, and connecting objects together.

The lock/unlock state of the window is indicated by the presence of the patcher palette at
the top of the window. If you see the palette, then the window is unlocked.

There are several other ways you can lock or unlock a patcher.

• Choose Edit from the View menu, or type Command-E on Macintosh or Control-E
on Windows.

• Command-click on Macintosh or Control-click on Windows on the “white space” in
the Patcher window.

• On Macintosh, there is a transparent rectangular pill on the right side of the window
that can be used for toggling between locked and unlocked state.

• Using one of these methods, unlock the Patcher window. You should be able to see
the palette. You can now modify the program.

Tutorial 1 Saying “Hello!”

10

The first two items in the palette are the object box and the message box.

Modifying the Patch

Now we’ll produce a program that prints “Good-bye!”

• Click on the object box in the palette. The cursor turns into an object icon. Click
inside the Patcher window, near the bottom-right corner. A list of pre-defined Max
objects called the New Object List will appear. (If the list does not appear, it’s because
New Object List is not checked in the Options menu. You can bring up the Object
List by Option-clicking the empty object box on Macintosh or Alt-clicking the empty
object box in Windows. Or, if you want the list to always appear, check New Object
List in the Options menu.)

• Scroll down through the right-hand column of the New Object List until you see print,
click on the word to select it, and type the Return or Enter keys on Macintosh or the
Enter key on Windows. Alternatively, you could just type the first few letters of the
word “print” until it is selected in the list.

Tutorial 1 Saying “Hello!”

11

Note: If you want to type in the name of an object without using the New Object List,
type the Delete (Backspace) key or click anywhere outside the New Object List and it
will go away. You can also hold down the Option key on Macintosh or the Alt key on
Windows as you place the object box in the window if you want to temporarily toggle
the New Object List option on or off.

• You now have an object box with the word print in it. Type the Enter key on
Macintosh or the Shift and Enter keys on Windows, or click anywhere else in the
window (outside that object box), and a print object is created with an inlet at the top.

• Next, click on the message box icon in the palette, and click just above your print
object, to place a new message object in the window. Type Good-bye! into your message
object.

To connect the message object to the print object, drag from the outlet of the message
object to any place inside the print object:

• Position the cursor on the outlet of your message box. When the cursor is over an
outlet, the outlet expands. Click on the expanded outlet and drag until the cursor is
inside your print object and you see the inlet of the print object expand. Then release
the mouse button. This will create a patch cord connection between the two objects.

Note: If you are unable to connect a patch cord according to the method described in the
preceding paragraph, it’s probably because Segmented Patch Cords is checked in the
Options menu. For the moment, that option should be unchecked.

If your message object and your print object are not perfectly aligned vertically, the patch
cord will appear jagged. This has no effect on the functioning of the patch. However, if
you’re a fastidious person and want to clean up the appearance of your patch, select both
objects just as you’d select multiple icons in the Finder (by Shift-clicking on each of them
or by dragging across both of them with the mouse). Then choose Align from the Object
menu.

Tutorial 1 Saying “Hello!”

12

You can also move objects by dragging them to the desired location. Objects and patch
cords can be removed entirely by clicking on them to select them, then pressing the
Delete key on Macintosh or the Backspace key on Windows or choosing Cut or Clear
from the Edit menu.

• Type Command-E on Macintosh or Control-E on Windows to lock the Patcher
window. Your program is now ready to run. Click on the message box containing Good-
bye! and you should see print: Good-bye! in the Max window.

Summary

When a Patcher window is unlocked, it is in Edit mode, and can be modified. When the
window is locked, the program is ready to run. You can also run the program by holding
down the Command key on Macintosh or Control key on Windows and clicking in the
Patcher window.

A message is sent through a patch cord from the outlet of one object to the inlet of
another. A message box contains any message you type into it. When you click on a
message box, it sends its message out the outlet. A print object prints in the Max window
whatever message it receives in its inlet.

See Also

message Send any message
print Print any message in the Max window
Objects Creating a new object in the Patcher window

13

Tutorial 2: The bang Message

The bang Message

• This program is actually three separate printing programs. Click on the button icons in
each program and notice what gets printed in the Max window.

The first thing to observe is that two of the print objects have names: x and y. Since there
can be any number of print objects in a Patcher window, you will often want to make it
clear which one is actually printing a message. You do this by putting a name after the
word print in the box. When there’s no name, the message is preceded by print:, as in
Program 1. When there is a name, it precedes the message, as in Programs 2 and 3.

The second important new thing in this window is the button object. It appears as a
separate item in the palette, and is really very much like a message box that contains the
message bang.

You see, bang is a magic word in Max. It’s a special message that means, “Do it!”, which
causes an object to do whatever it’s supposed to do. For example, a message box sends out
the message it contains in response to a bang or a mouse click.

• In Program 1, you can click on the “Gotcha!” message box to print it, or you can click
on the button, which sends a bang message to the inlet of the message box. The effect is
equivalent, since in either case the message box is “triggered” and sends out the
message it contains.

• Program 2 not only proves that the button quite literally sends the message bang; it also
proves that bang has no special effect on the print object. That’s because the print object
doesn’t try to understand the message it receives. Its only purpose in life is to print
out what arrives in its inlet.

Tutorial 2 The bang message

14

• Program 3 is sort of a puzzler. Clicking on either button produces a printout of y: bang.

When you click on the upper button, which button actually supplies the message to the
print object?

The answer is the lower button.

The upper button sends a bang message to the lower button. The lower button interprets the
bang message as “Do it!”, and performs its expected function, which is to send a bang
message. The print object simply prints out what it receives.

Summary

bang is a special triggering message that causes an object to perform its task. The button
object’s task is to send out the message bang, thus triggering other objects.

See Also

button Flash on any message, send a bang

15

Tutorial 3: About Numbers

int, float, and list

We have seen that a message can consist of text, and that some words have a special
meaning to certain objects, such as the word bang. Commonly, a message will consist of
one or more numbers.
Max distinguishes integer numbers from decimal numbers (with a fractional part).
Integer numbers are stored in Max in a data type called int, and decimal numbers are
stored in a data type called float.
Most of the time you won’t really need to worry about this distinction in how numbers
are stored, because Max will take care of it for you, and will even convert an int into a
float or vice versa if it needs to (for instance, if a float is received by an object that expects
to receive an int). The main thing you need to know is that when a float is converted to an
int, its fractional part is not rounded off, but is truncated. (The fractional part is just
chopped off.) For example, the number 6.799999 does not become 7, it becomes 6.

A message can also consist of several numbers, separated by spaces, which are all sent
together. This is known as a list. A list can consist of both ints and floats. You’ll encounter
lists in later chapters of the Tutorial.

Number box
If you want to show a number in a Patcher window, use a number box. There are two
number box icons available in the object palette, one for showing ints and one for showing
floats.

Tutorial 3 About numbers

16

A number received in the inlet of a number box is displayed and passed on out the outlet.
This is an effective object to use as a “wiretap” to see what is the most recent number to
have passed through a patch cord.

• Click on the different message boxes, and notice what is displayed, either in the number
box objects or in the Max window.

Notice a couple of important differences between printing messages with a print object,
and displaying them with a number box.

1. The print object will print any message it receives, regardless of the content of the
message. The number box, on the other hand, can display only one number at a time. If
it receives a list, it displays (and passes on) only the first number in the list. If it
receives an arbitrary text message, it does nothing except complain that it doesn’t
understand that message.

2. A number box can show only an int or a float. If an int number box receives a float, it
converts the number to int, and vice versa.

The number box has other features not described here. This patch does show one of its
most common uses, though—to display the number that has most recently passed
through a patch cord. You will learn more in the Number box Tutorial.

Summary

A Max message can consist of a single number, of type int (for integers) or float (for
decimals). Many numbers used in Max (such as MIDI data and millisecond time values)
are ints. A message can also consist of a space-separated list of numbers, which are all sent
together in one message.

A number box shows the most recent number it has received, and passes that number on
out the outlet. A number box is either of type int or float, and will convert numbers to that
type.

See Also

number box Display and output a number

17

Tutorial 4: Using metro

Object Names and Arguments

In this chapter, we introduce a new object called metro, which functions as a metronome.
You will notice that we have typed in a number after the word metro in the object box.
This is the number of milliseconds between ticks of the metronome.

The number after the word metro is called an argument. We have already seen arguments
used to give names to print objects. Arguments typically give objects information
necessary to do their job.

Some objects require typed-in arguments in order to function. More commonly, an
argument is optional, to supply some starting value, as in the case of metro where the
argument determines the initial speed of the metronome. When metro is started, it sends
out a bang message every n milliseconds (where n is the argument) until the metronome is
stopped. If no argument is typed in, metro has a default value of 5, and sends out a bang
every 5 milliseconds.

The metro object has two inlets. A message received in the left inlet can start or stop the
metronome. The metronome will start when it receives any non-zero number in its left
inlet, and it will stop when it receives a 0. Alternatively, you can send it a bang message to
start, and stop to stop. A number received in the right inlet will change the number of
milliseconds between bang outputs that was initially set by the argument.

Tutorial 4 Using metro

18

• Try turning the metro objects on and off, and watch what is printed in the Max
window.

• Try sending different numbers to the right inlet of metro, and notice the change in the
speed with which messages are printed. The speed can be changed while the
metronome is running, but the change does not take effect until the next bang is sent
out.

Because it sends out the message bang, metro is a useful object for triggering other objects
repeatedly at a specific speed.

Summary

After you type a name into an object box, you can supply additional information by
typing in arguments after the object name. Arguments are usually optional, but some
objects have obligatory arguments. If optional arguments are not typed in, Max usually
supplies a default value.

A metro sends out bang messages repeatedly at regular intervals of time, until it is stopped.
The number of milliseconds between bang messages is specified by the argument or by a
number received in the right inlet.

See Also

metro Output a bang, at regular intervals

19

Tutorial 5: toggle and comment

toggle

The toggle object is the box with an X in it in the object palette. It functions as an
indicator or a switch between two states: zero and non-zero.

• Click on the different message boxes containing numbers, and notice what happens to
the toggle and the number box.

The toggle object can receive a number or a bang in its inlet. If the number is non-zero,
toggle will show an X and send out the number. If the number is 0, the box will be blank
and 0 is sent out the outlet. The toggle expects to receive an int, so when it receives a float
it converts it to int. That is why the number 0.9 is understood as 0 by toggle.

The toggle alternately sends out the values 1 and 0 each time it is clicked with the mouse
or receives a bang in its inlet. When it receives a bang or a mouse click, it reverses its state
and sends out the new value. This distinction between zero and non-zero is Max’s way of
turning things on and off, or distinguishing between true and false.

• Thus, you can use a toggle as an on/off switch. In our example, the metro object can be
turned on and off by clicking on the toggle. Try it. This works because metro starts
when it receives a non-zero number (like 1) and stops when it receives a 0.

Tutorial 5 toggle and comment

20

comment

The dotted box in the palette, to the right of the message box, is a comment.

A comment has no effect on the functioning of a program. It’s simply a way of putting text
into a Patcher window. The main reasons to add a comment are:

1. To label objects in the patch, such as “on/off switch”.

2. To give instructions to the user, such as “Click here”.

3. To explain the way a program works, or how a particular item in a program functions.
This is not only helpful to the user of the program, but is also very helpful to you, the
programmer. You’d be amazed how quickly you can forget how your own program
works. Get in the habit of adding many explanatory comments as you build programs.

A comment box (or almost any other object) can be resized by dragging on the grow bar in
the lower-right corner of the box.

• You can also change the size of the text in a comment (or any other object). Click on
the comment box to select it, then choose a different font or size from the Font menu.
Try changing the font characteristics and the size of the comment that says “This is a
comment.”

When you specify font characteristics with no objects selected, you set the characteristics
for any new objects you subsequently create in the active window. When you specify font
characteristics with the Max window in the foreground, you set the characteristics for all
new Patchers you subsequently create. Max stores these font characteristics in the Max
Preferences file, and recalls them each time you use Max.

Tutorial 5 toggle and comment

21

Summary

A toggle can be used to generate the numbers 1 and 0, for turning other objects (such as
metro) on and off. It can also be used as an indicator of numbers passing through it,
telling whether the most recent number was zero or non-zero (although any floats
passing through will be converted to int.) A comment doesn’t do anything, but is useful for
putting text in a Patcher window.

See Also

comment Put explanatory notes or labels in a patch
led Display on/off status, in color
togedge Report a change in zero/non-zero values
toggle Switch between on and off (1 and 0)
ubutton Transparent button, sends a bang

22

Tutorial 6: Test 1—Printing

Make a Printing Program

Here is an exercise to make sure that you understand what has been explained so far.

• Create a patcher program which, when turned on, prints the phrase…

test: 1

…in the Max window every two seconds until it is turned off. Include a way of
turning the program on and off.

The answer has been hidden in the right side of the Patcher window. Scroll to the right or
enlarge the Patcher window to see the answer.

23

Tutorial 7: Right-to-left Order

Message Order

This lesson illustrates that messages in Max are always sent in right-to-left order. And, if a
message triggers another object, that object will send its message(s) before anything else is
done. Knowing these two principles can help you figure out exactly how a patcher
program is operating.

For example:

• Click on the button marked A. The bang message is first sent to the message box
containing the number 60, that message is sent to the print object, and A: 60 is printed
in the Max window. Then the bang message is sent to the message box containing the
number 50, that message is sent to the print object, and A: 50 is printed in the Max
window. Finally, the bang is sent to the message box containing the number 40, that
message is sent to the print object, and A: 40 is printed in the Max window.

This illustrates the right-to-left order in which bang messages are sent from the outlet of
button to other objects, and also illustrates that the order of messages continues down the
line until no more objects are triggered (in this case, until the print object does its job),
then goes back to the next patch cord coming out of the button, and the next bang is sent.

Tutorial 7 Right-to-left order

24

bangbang

The bangbang object sends a bang out each of its outlets when it receives any message. The
number of outlets is specified by the typed-in argument. The order in which the messages
are sent out the outlets is still right-to-left: the rightmost outlet sends first and the
leftmost outlet sends last.

• Click on the button marked “B”, and you will see that when an object (such as
bangbang) has more than one outlet, messages are sent out the outlets in right-to-left
order.

When multiple patch cords are connected to a single outlet, as in examples A and C,
messages are sent to the receiving objects in order of their right-to-left position, but when
a single object has more than one outlet, as in examples B, D, and E, messages are sent out
the outlets in right-to-left order, regardless of the destination.

trigger

The trigger object is very similar to bangbang, but deals with numbers as well as bang
messages. Instead of a single argument telling how many outlets there are, the number of
outlets a trigger object has depends on how many arguments are typed in. Each argument
in a trigger specifies what the output of an outlet will be: i for int, f for float, b for bang, or l
for list (not shown in the example).

• Click on the message box 90, marked C. The print objects receive the number in right-
to-left order, depending on their position.

• Click on the message box 90 marked D. Each outlet of the trigger has been assigned to
send an int, so the number 90 will be sent out each outlet, in order from right-to-left.

• Click on the message box 90 marked E. In this example, each outlet has been assigned
to send something different. The right outlet sends an int, the middle outlet sends a
float, and the left outlet sends a bang.

Note: The names of bangbang and trigger can be shortened to b and t (as in example E).
Max will still understand these object names.

Summary

An object with multiple outlets sends messages out its outlets in order from right-to-left.
When multiple patch cords are connected to a single outlet, the messages are sent in

Tutorial 7 Right-to-left order

25

right-to-left order, depending on the position of the receiving objects. (If the receiving
objects are perfectly aligned vertically, the order is bottom-to-top.) When the bangbang
object receives any message, it sends a bang out each outlet. When trigger receives a
number, a list, or a bang, it converts the message into the type assigned to each outlet
before sending it out.

See Also

bangbang Send a bang to many places, in order
buddy Synchronize arriving numbers, output them together
fswap Reverse the sequential order of two decimal numbers
swap Reverse the sequential order of two numbers
trigger Send a number to many places, in order

26

Tutorial 8: Doing Math in Max

Arithmetic Operators

Max has an object for each of the basic arithmetic operations, plus a modulo operator
(which gives the remainder when two integers are divided).

We call these objects operators—and the numbers they operate upon are called operands.
Each operator object expects one operand in its right inlet (which it stores) and then the
other in its left inlet (which triggers the calculation and the output). An initial value for
the right operand can be typed in as an argument. In the upper-left example, you see both
methods. Be aware, however, that as soon as a different number is received in the right
inlet, it will be stored in place of the initial value, even though that initial value continues
to show as the argument.

Left Inlet Triggers the Object

Note that just connecting to an object’s inlet does not perform any calculation. You have
to trigger the calculation by sending a number (or bang) into the left inlet. The vast
majority of objects are triggered by input received in the left inlet. Input received in the
other inlets is usually stored for later use.

• In the upper examples, click on the message boxes above the operators.

Notice that the number coming in the right inlet has to be received before the number in
the left inlet is received. That is because the message received in the left inlet triggers the

Tutorial 8 Doing Math in Max

27

calculation with the most recently received numbers. If you haven’t supplied a number as a
typed-in argument (and no number has been received in the right inlet), 0 is the default
argument for the +, -, and * objects, and 1 is the default for / and %.

Int or Float Output

You may have noticed that the / object sends out 8 as the result of 25 ÷ 3. That’s because
the output is an int, and is truncated before being sent out.

All the arithmetic operators send out an int as the result, unless they have a typed-in
argument that contains a decimal point, in which case they are converted to float.

The two division programs at the bottom-right corner of the Patcher window
demonstrate converting from one type to another. The first program removes the decimal
part of any float numbers it receives. It performs the operation 12 ÷ 2 and outputs a result
of 6. The second program divides the numbers 12.75 and 2.5 as floats and gives a full float
output, because its typed-in argument contains a decimal point.

If you want an operator always to do float arithmetic operations, give the object an initial
argument of a number with a decimal point, and then send the numbers you want it to
use in through the left and right inlets.

bang Message in Left Inlet

The program in the bottom-left corner illustrates a couple of other features of operators.

• First, send the number 4 to the left inlet of the + object by clicking on the message
containing 4. The object performs the calculation 4 + 5 and outputs the result, 9.

• Next, send the number 10 to the right inlet. The number 5 is replaced by the number
10, but no output is sent. Only the left inlet triggers output.

Tutorial 8 Doing Math in Max

28

• Now click on the button to send a bang to +. What happens? The bang causes + to “Do
It!”—in this case, to do the calculation with the numbers it has most recently received.

List in Left Inlet

Both operands can be sent to an operator together, as a list received in the left inlet. The
operator will function exactly as if it had received the second number in the right inlet
and the first number in the left inlet. The numbers are stored, the calculation is
performed, and the result is sent out.

• Click on the message box containing 3 20 to see the effect of sending a list to the left
inlet.

• Then send the number 4 to the left inlet, and you will see that the number 20 has been
stored just as if it had been received in the right inlet.

This demonstrates that when you send a list of numbers to an object with more than one
inlet, the numbers are generally distributed to the object’s inlets, one number per inlet.
You will see other examples of this in future chapters.

Summary

Mathematical calculations are performed by arithmetic operator objects: +, -, *, /, and %.
The operands are received in the two inlets, but only the left inlet triggers output. A bang
or a list in the left inlet can also trigger output. The operators send out an int, unless they
have a float argument, in which case they send out a float.

Tutorial 8 Doing Math in Max

29

Most objects in Max are triggered by input received in the left inlet. A list can be received
in the left inlet, supplying values to more than one inlet at the same time.

Arithmetic operators are essential for any algorithm involving numerical calculation.
Their use will be shown in future programs.

See Also

expr Evaluate a mathematical expression
Tutorial 38 expr and if

30

Tutorial 9: Using the slider

Onscreen Controller

Clicking on a message box is one way of sending a number through a patch cord. Another
object, the slider, lets you send any of a whole range of numbers by dragging with the
mouse.

The slider object looks like this in the palette…

When it is placed in the Patcher window it resembles a slider on a mixing console.
Dragging on the slider sends out numbers as the mouse is moved.

• Click and drag on the first slider in the Patcher window, and see the output in the
number box.

When you create a new slider, its output ranges from 0 to 127. You can change the Slider
Range by selecting the slider (when the Patcher window is unlocked) and choosing Get
Info… from the Object menu. The slider automatically resizes itself to accommodate the
specified range.

Tutorial 9 Using the slider

31

The Get Info dialog box (also called the Inspector) has two other values you can set: a
Multiplier, by which all numbers will be multiplied before being sent out, and an Offset,
which will be added to the number, after multiplication.

• The second slider in the Patcher window has a range of 99 (from 0 to 98), but before a
number is sent out it is multiplied by 50, then has 100 added to it. So, when the slider
is in the lowest position, it will output (0 * 50) + 100, which equals 100. When the
slider is in the top position, it will output (98 * 50) + 100, which is 5000.

Many objects let you set options like this with the Inspector.

Graphic Display of Numerical Values

In addition to responding to the mouse, the slider will move to whatever number it
receives in its inlet. This makes it useful for graphically displaying the numbers passing
through it. The Multiplier and the Offset are also applied to numbers received in the inlet,
so the slider can actually change values as they pass through.

• Click on the message boxes containing numbers, above the middle slider objects.

Notice that both slider objects move to display the value they have received, but the
number that each one sends is different. The slider on the left has an Offset of 0 and a
Multiplier of 1, so it doesn’t change the number it receives, but the other slider multiplies
the incoming number by 2 and adds 1 to it.

Notice also that the numbers that are received and sent out can exceed the specified range
of the slider, and that a float gets converted to int.

Other Inputs

A slider can receive other messages in its inlet. When it receives bang, it sends out whatever
number it currently is displaying (with the Multiplier and Offset effects). The word set,

Tutorial 9 Using the slider

32

followed by a number, sets the value of the slider without sending any output. The word
size, followed by a number, changes the Range of the slider to that number.

Summary

A slider lets you output a continuous stream of numbers within a specified range by
dragging on it with the mouse. It will also show and send out numbers received in its
inlet, making it useful for graphically displaying the numbers passing through it.

By choosing Get Info… from the Object menu, you can change the Slider Range, and can
also specify a Multiplier, by which all numbers will be multiplied before being sent out,
and an Offset, which will be added to the number, after multiplication.

See Also

hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
rslider Display the range between two values
slider Output numbers by moving a slider
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

33

Tutorial 10: Number Boxes

Onscreen Controller

In the previous chapter we saw that a slider graphically displays the numbers passing
through it, and can also send out numbers when you drag on it with the mouse. The
number box has these same capabilities.

• Try dragging on the number box at the top of the Patcher window, and you will see that
it can be used as an onscreen controller much like the slider.

Unlike the slider, the number box can have an unlimited range. You can produce virtually
any number with the number box if you keep dragging.

Type In Numbers

You can also type numbers into a number box from the computer’s keyboard.

Tutorial 10 Number Boxes

34

• Click on the number box at the top of the screen, without dragging. Notice that the
triangle in the left edge of the number box becomes highlighted, showing that it has
been selected.

• Type the number 64 on the computer’s keyboard. The number will be followed by an
ellipsis, indicating that the number has not yet been sent out the outlet.

• When you have finished typing in the number, you can send it out the outlet with any
one of three actions: type the Return or Enter keys on Macintosh or the Enter key on
Windows, type the Enter key on Macintosh or the Shift and Enter keys on Windows,
or click anywhere in the Patcher window outside of the number box.

• While a number box is selected in a locked Patcher, you can also raise and lower the
number in it by pressing the up and down arrow keys. Holding down one of these
arrow keys moves the number up or down continuously, just as if you were dragging
on the number box with the mouse.

You can see that the number box is useful both for displaying the numbers received in the
inlet (as in the case of the number box below the slider), and for allowing you to send
numbers by typing them in or dragging with the mouse. The second patch shows the
number box in both uses—for sending numbers to the + object, and for displaying the
result.

• Send a number to the right inlet of the + object, either by dragging on the number box
or by clicking on it and typing in a number. Remember, we want to send a number to
the right inlet first, because the left inlet is the one that triggers the addition.

• Now send a number to the left inlet of the + object, and you will see the result of the
addition in the bottom number box.

Number box Range

You can set many characteristics of a number box—how it functions and how it looks—by
selecting a number box and choosing Get Info… from the Object menu to display the
number box Inspector.

Tutorial 10 Number Boxes

35

Inspector for a number box

When you create a new number box, it has an unlimited range. You can limit the range by
typing a number into the Minimum and Maximum boxes in the Inspector.

• Unlock the Patcher window, select the number box located above the slider, then choose
Get Info… from the Object menu.

• Click on the checkboxes for No Min and No Max to disable them. Type the number 0
into the Minimum box, and type the number 127 into the Maximum box. (You can
move from one box to the other by typing the Tab key.) Click OK, then re-lock the
Patcher window.

• Now when you drag on the number box, it will not exceed the range of 0 to 127.

The Minimum and Maximum settings of a number box limit the range of numbers that can
be sent out by dragging on it or by typing in a number, and also limit the range of
numbers passing through it. Incoming numbers that exceed the specified Minimum and
Maximum will be changed to stay within the limits.

Tutorial 10 Number Boxes

36

Display Options

The Inspector has check boxes for toggling on and off various features. Some of the
options affect the way the number box functions, while others only affect the way it looks.

The Draw Triangle option is already checked, so that the triangle in the left edge of the
number box will make it visually distinct from the message box. Also, the triangle shows
when a number box has been clicked on, by becoming highlighted. The presence or absence
of the triangle has no effect on the way the object functions, but it lets you change the
appearance.

Draw in Bold displays the number in bold typeface. These aesthetic options can be used to
emphasize certain number box objects, or to show the user of your program which ones to
drag on.

The Display pop-up menu lets you select the format of the displayed data. (These options
are available only in the int number box.)

Although we won’t be using these options in the tutorial, the Inspector will also let you
assign colors to both the numbers and the box they are in, or to make the box
transparent. You can also choose fonts and font sizes for numbers from the Font menu.

Note: Numbers entered by typing into a number box must be typed in the same format as
that in which the number is being displayed.

Tutorial 10 Number Boxes

37

Mouse Options

Normally the number box sends out a continuous stream of numbers as it is being dragged
upon with the mouse. The Output only on Mouse-Up option causes the number box to send
out only the last number, the number that is showing when the mouse button is released.
This lets you see the numbers as you drag, but only send out the single number that you
choose.

When Can’t Change is checked, numbers cannot be entered by dragging or typing. This is
useful when you want a number box to be for display only, without being an onscreen
controller.

The third patch shows some of these options in use. The patch is for converting decimal
numbers to their hexadecimal or note name equivalents, or vice versa.

• Drag on the top number box, and you will see the numbers displayed in different
formats.

Summary

The number box can be used to display numbers passing through it, and/or as an onscreen
controller for sending out numbers. Numbers can be sent out by dragging on the number
box with the mouse, or by clicking on the number box and then typing in a number (or
pressing the up or down arrow keys).

The range of numbers a number box can send out can be specified by choosing Get Info…
from the Object menu. With the Inspector you can also change how the numbers are
displayed, and how the number box responds to the mouse.

See Also

number box Display and output a number
Tutorial 3 About numbers

38

Tutorial 11: Test 2—Temperature Conversion

Using Arithmetic Operators

To be sure you understand how to use arithmetic operators and the number box, try this
exercise:

1. Make a patch that converts a temperature expressed in degrees Fahrenheit into one
expressed in degrees Celsius. Use a number box to enter the Fahrenheit temperature,
send the number to arithmetic operator objects to convert it, and use another number
box to display the result as a Celsius temperature.

Hints

The formula for converting Fahrenheit to Celsius is:

˚C = (˚F - 32) * 5/9

(The * is the multiplication operator.) You will first want to subtract 32 from the
Fahrenheit temperature, then multiply the result by 5, then divide that result by 9.

Using Sliders

Here is a second exercise, a bit more difficult than the first one.

2. Make a patch that converts a temperature expressed in degrees Celsius into one
expressed in degrees Fahrenheit. Limit the temperatures between the freezing point
and the boiling point.

In addition to using number box objects to show the temperatures, use slider objects as
“thermometers” to show the temperatures graphically.

Since the Offset and Multiplier features of the slider objects can do addition and
multiplication, try using these features to do some of the arithmetic work. Use as few
arithmetic operator objects as possible.

Tutorial 11 Test 2—Temperature Conversion

39

Hints

The formula for converting Celsius to Fahrenheit is:

˚F = (˚F * 9/5) +32

You will first want to multiply the Celsius temperature by 9, then divide the result by 5,
then add 32 to that result.

In degrees Celsius, 0 is the freezing point and 100 is the boiling point. In degrees
Fahrenheit, 32 is the freezing point and 212 is the boiling point.

• Use the Minimum and Maximum features of the number box to limit the input (Celsius
temperature) between 0 and 100.

Tutorial 11 Test 2—Temperature Conversion

40

• Set the Slider Range of the slider which is depicting your Celsius “thermometer” to 101
so that it will display values from 0 to 100. (You can use the Multiplier feature of this
slider to multiply the Celsius temperature by 9.)

• Use a / object to divide the Celsius temperature by 5. Then use the Offset feature of
the slider that’s depicting your Fahrenheit “thermometer” to add 32, and you will have
the result. (Set the Slider Range to 181 so that it will range from 32 to 212.

Tutorial 11 Test 2—Temperature Conversion

41

Your objects will be connected something like this:

Scroll the Patcher window to the right to see solutions to these two exercises. Although
temperature conversion is not a very useful musical function, these exercises exemplify
how to solve a mathematical problem using operator objects.

In the subsequent chapters you will use these operators to manipulate MIDI data.

Summary

Arithmetic operators can be linked together to form a complete mathematical expression.
The order in which the objects are linked is important for performing each operation in
the proper order.

In some instances, the Offset and Multiplier features of the slider object can be used to
perform an arithmetic operation.

42

Tutorial 12: Using MIDI Data

Verify your MIDI Setup

Now that you’ve gotten a feel for how applications are constructed by connecting objects,
we’ll begin using MIDI data in our patches so that the examples have a more direct
musical application.

Make sure that your MIDI equipment is connected properly. If you have any doubts,
review the section of the Fundamentals manual titled Setup, and review the first page of
the Tutorial 1 for a discussion of MIDI equipment and connections.

MIDI Objects

There are many objects for transmitting and receiving data to and from your MIDI
equipment. Objects that receive MIDI messages from your synth don’t receive that data
in through their inlet. Their MIDI input comes directly from the virtual MIDI ports (see
the Ports chapter in the Fundamentals manual) rather than from other Max objects.
Objects that transmit MIDI messages have no outlets, since they transmit their messages
out from Max.

The most basic MIDI objects are midiin and midiout, which receive and transmit raw MIDI
data byte-by-byte, without analyzing the MIDI messages at all. More commonly, though,
you will use more specialized MIDI objects, which filter the raw MIDI data coming into
Max, and output only the information you need.

Tutorial 12 Using MIDI Data

43

For example, the notein object looks only for MIDI note messages, and when a note
arrives, notein outputs the key number, the velocity, and the channel number. Similarly,
the bendin object looks only for incoming pitch bend messages, and sends out the amount
of pitch bend and the channel number.

The notein and noteout Objects

For the moment we will concern ourselves only with MIDI note data—receiving
information about notes played on the synth, and transmitting messages to play notes on
the synth.

• Play a few notes on your synth. You should see the note data in the number box objects.

If you don’t see anything happen, re-check your connections.

For the purpose of this Tutorial, your MIDI interface should be connected to your
computer. If you have not already done so, you should use the MIDI Setup dialog to
assign port a—with a channel offset of 0— to the input and output devices you want to
use for the Tutorial.

The letter argument to notein indicates the port in which it receives MIDI note messages.
If no argument is present, it receives from all ports.

Tutorial 12 Using MIDI Data

44

• Play a few notes and hold the keys down for a moment before releasing them. You can
see that a message is sent for each note both when you press the key and when you
release it. A note message with a velocity of 0 indicates a note-off.

The patch on the left is for playing in parallel octaves. Every note you play on the synth is
received by the notein object. The pitch information is sent to a + object which adds 12 to
the pitch value. This, of course, raises the pitch by 12 semitones (1 octave). We’ve
included extra number box objects so that you can see the pitch values both as numbers
and as MIDI note names.

The velocity and channel information is passed on unchanged, and is reunited with the
transposed pitch information in the noteout object. The new note, an octave higher than
the one you played, and with the same velocity as you played, is sent back out to the synth
by noteout.

Message Order

Although the pitch, velocity, and channel information appear to come out of notein at the
same time, the numbers come out in right-to-left order (channel, then velocity, then
pitch) just like any other object.

Like most objects, noteout is triggered by a message received in its left inlet—the pitch
number. The pitch is combined with whatever velocity and channel values were most
recently received in the other inlets, and a MIDI message is sent out to the synth.

This consistency of message ordering—outlets always send right-to-left, and objects are
triggered by the left inlet—allows different objects such as notein and noteout to
communicate easily. Because the velocity and channel numbers come out of notein before
the pitch does, they arrive at noteout before the pitch does, keeping all the data properly
synchronized.

Receiving On One Channel

A notein object with no arguments, or with only a letter argument, receives incoming note
messages on all channels. (This is known as omni mode in MIDI terminology.) You can
set notein to receive on only one channel by typing in a channel number argument. When
there is a channel argument, notein has only two outlets—for pitch and velocity—because
the channel number is already known. Both the port argument and the channel argument
are optional.

Tutorial 12 Using MIDI Data

45

• If your MIDI keyboard can transmit on different channels, set it to transmit on some
channel other than 1. Now when you play notes the notein on the left still receives
them, but the notein on the right ignores them.

Transmitting Note Messages

You don’t necessarily need to play notes into Max to send notes out. You can transmit
notes to the synth that are produced within Max.

One way to do this is to send a list—consisting of pitch, velocity, and channel—to the left
inlet of noteout. You may remember this use of lists with the arithmetic operator objects
in Tutorial 8.

• Click on the message boxes containing lists. One list sends a note-on, and the other
sends a note-off (a note with a velocity of 0). It is necessary (or at least polite) to
follow a note-on with a note-off, otherwise the note will continue to play. Try this
with a sustained sound on your synth.

The last patch demonstrates that you can type in an argument for the channel on which
noteout will transmit. The channel inlet is still present, however, and you can change the
channel by sending in a new number.

The patch also shows that noteout combines pitches with whatever velocity was most
recently received.

• Try sending different velocities to noteout. The velocity is just stored until a pitch
number is received to trigger a MIDI note message.

Summary

The notein object looks for incoming MIDI note messages, and outputs pitch, velocity,
and channel data. You can type in a specific port letter as an argument, which causes
notein to output only the note data received in that one port. You can also type in a
specific channel number, causing notein to output only the note data received on that one
channel.

When the noteout object receives a number in its left inlet, it uses that number as a pitch
value, combines the pitch with a velocity and a channel number, and transmits a MIDI
note message. The pitch, velocity, and channel can also be received together as a list in the
left inlet.

Tutorial 12 Using MIDI Data

46

See Also

notein Output incoming MIDI note messages
noteout Transmit MIDI note messages

47

Tutorial 13: Sending and Receiving MIDI Notes

Note-On and Note-Off Messages

One of the main problems that you encounter when sending note messages to a synth
from Max is the need to follow every note-on message with a corresponding note-off
message. For example, just sending a pitch and a velocity to noteout plays a note on the
synth, but that note will not be turned off until you also send the same pitch with a
velocity of 0.

makenote

Max has objects that generate note-off messages, for turning off notes that have been sent
to the synth. One such object is makenote.

When makenote receives a number in its left inlet, it uses the number as a pitch value,
combines that pitch with a velocity, and sends the numbers out its two outlets. Then after
a specified delay (or duration), makenote automatically sends the same pitch number, but
with a velocity value of 0.

Tutorial 13 Sending and Receiving MIDI Notes

48

The synth interprets a note-on message with a velocity of 0 as a note-off. So, when the
output of makenote is sent to noteout, both a note-on and a note-off get transmitted to the
synth.

• Drag on the slider marked pitch in Patch 1. Each number that comes out of the slider is
combined with a velocity by makenote (in this case, the velocity is 127, specified in the
first argument), and the pitch and velocity are sent to noteout.

50 milliseconds after each pitch is received (the duration specified in the second
argument) makenote sends the same pitch out again, with a velocity of 0. The result is
that every note has a duration of 50ms.

The velocity and the duration can be changed by numbers received in the middle and
right inlets. The most recent values received in these inlets are used the next time a pitch
is received in the left inlet.

• Try changing the velocity and duration by dragging on the slider objects, then play
more notes by dragging on the pitch slider. The notes now have the velocity and
duration you specified.

Note: When no channel number has been specified to noteout, either as a typed-in
argument or in the right inlet, it is set to channel 1 by default.

Tutorial 13 Sending and Receiving MIDI Notes

49

Patch 2 demonstrates that the pitch, velocity, and duration values can all be received in
the left inlet as a list.

• Click on the message box containing the number 60. You can see that it is combined
with a velocity of 64, then combined with a velocity of 0 after 250 milliseconds.

• Click on the message box containing the list. The pitch 72 is sent out with a velocity of
96, and after 1.5 seconds it is sent out again with a velocity of 0.

• Now click again on the number 60. You can see that the velocity and duration values
(96 and 1500) have been stored in makenote, and are applied to the pitch received in the
left inlet.

stripnote

The stripnote object is sort of like makenote in reverse. It receives a pitch and a velocity in
its inlet, and passes them on only if the velocity is not 0. In this way, it filters out note-off
messages, and passes only note-on messages.

This is useful if you want to get data only when a key on your keyboard is pressed down,
but not when the key is released. For example, you might want to use a pitch value from
the keyboard to send a number to some object in Max, but you wouldn’t want to receive
the number both from the key being pressed and from the key being released.

flush

The flush object is another object for generating note-off messages. Unlike makenote,
however, it does not generate them automatically after a certain duration. Instead, flush
keeps track of the notes that have passed through it. When it receives a bang in its left inlet
it provides note-offs for any notes that have not yet been turned off.

Both flush and stripnote receive velocity values in the right inlet and pitch values in the left
inlet, and pass the same type of values out the outlets. They are triggered by a pitch value
received in the left inlet, and use the velocity value that was most recently received in the
right inlet. Both objects can also receive the pitch and velocity values together as a list in
the left inlet.

• Play a few notes on your MIDI keyboard. You can see that stripnote passes only the
note-on messages and suppresses the note-offs. The note-ons get passed through flush,
and are received by the print objects. (A flush object will also pass on any note-offs it
receives, but in this case stripnote has filtered them out.)

Tutorial 13 Sending and Receiving MIDI Notes

50

• Now click on the button to send a bang to the left inlet of flush. The flush object keeps
track of all the note-ons it has received that have not been followed by note-offs, and
when a bang is received, flush provides note-offs for those held notes.

The advantage of sending pitch and velocity pairs through flush before sending them to
noteout is that flush has no noticeable effect until it receives a bang, then it turns off any
notes that are still on. This is useful for turning off stuck notes.

Summary

A MIDI note-on message transmitted by noteout should be followed by a corresponding
note-off message, so that the note played by the synthesizer gets turned off.

The makenote object combines pitch values with velocity values, to be sent to noteout.
After a certain duration, the same pitch is sent with a velocity of 0, to turn off the note.
The stripnote object is the opposite of makenote. It filters out note-off messages (pitch-
velocity pairs in which the velocity is 0), and passes on only note-on messages (messages
with a non-zero velocity).

The flush object keeps track of the notes that have passed through it, and when it receives
a bang it sends out a note-off for any notes which are still on.

See Also

flush Provide note-offs for held notes
makenote Generate a note-off message following each note-on
poly Allocate notes to different voices
stripnote Filter out note-off messages, pass only note-on messages
sustain Hold note-off messages, output them on command

51

Tutorial 14: Sliders and Dials

Diverse Onscreen Controllers

In this tutorial, we’ll introduce some objects that function similarly to the slider, but differ
somewhat in appearance and behavior.

kslider

Patch No. 1 is similar to the patch in the previous chapter. It allows you to play notes with
the mouse. However, this patch uses a keyboard slider, kslider.

• Try playing notes by clicking and/or dragging on the kslider. It has been set to output
numbers from 36 to 96 (MIDI notes C1 to C6) out its left outlet. The numbers are then
sent to the left inlet of makenote, where they are paired with a velocity (from the right
outlet of kslider), and the notes are sent to noteout.

• When you drag along the lower half of kslider, it outputs only the numbers associated
with the white keys. When you drag along the upper half, it plays both white and
black keys.

• The velocity that is sent out the right outlet depends on how high the mouse is placed
on the key you are playing.

Tutorial 14 Sliders and Dials

52

The Range and Offset of the notes displayed by kslider can be changed by choosing Get
Info… from the Object menu. The Offset is the value that will be output by clicking on
the lowest note of the kslider, and is specified as a MIDI note name. The default is C1 (36).
If you want an offset of 0, set it to C-2. The Range is specified as the number of octaves you
want the kslider to have. The Inspector also lets you select one of two sizes for kslider, Large
or Small.

Range and Offset refer only to the numbers displayed by kslider, or sent out its outlet by
clicking and dragging with the mouse. Numbers received in the inlet of kslider are
unaffected by the Offset, and are passed through unchanged.

Playing Parallel Chords

Suppose you wanted kslider to play parallel major triads. How would you go about it?

In addition to sending the numbers directly to the left inlet of makenote, you can also send
them to two different + objects. One + object can add 4 to the number (raising the pitch a
major third), and the other can add 7 (raising the pitch a perfect fifth). These transposed
pitches are then sent to makenote, along with the original pitch.

• Try it yourself. Unlock the Patcher window and create two new + objects just above
makenote. Then connect the outlet of the number box to the inlets of the + objects, and
connect the outlets of the + objects to the left inlet of makenote.

• Now lock the Patcher window and click on a note of the kslider to hear the results. You
can also try changing the numbers you add with the + objects, to create other types of
triads.

Tutorial 14 Sliders and Dials

53

dial, hslider, and uslider

In Patch 1 the velocity values are displayed by a slider object named uslider, and the
durations are supplied by a dial. Patch 2 contains the horizontal slider, hslider.

Various sliders and dials in the palette

There are a few important differences between these objects and the slider and number box
objects seen in previous chapters.

1. The slider and the number box send out numbers when you drag them with the mouse.
You can drag on the other sliders and dials, but you can also change them with a
single mouse click.

• Click on the sliders and dials, and notice how they jump to the new position and send
out a number, even without dragging the mouse.

2. The slider and kslider objects resize themselves automatically depending on their range.
The hslider and uslider can be shrunk or enlarged to virtually any size with the grow
bar, regardless of the range of numbers they send out. The dial has only one possible
size, regardless of its range.

3. Although the slider and kslider may have a limited range of numbers that can be output
by dragging, they do not limit the range of numbers that can pass through them. The

Tutorial 14 Sliders and Dials

54

dial, hslider, number box, and uslider do limit the numbers received in their inlets. Any
incoming number that is less than 0 (or the specified minimum, in the case of number
box), or that exceeds the specified range, will be automatically restricted within those
limits.

The limiting feature can be put to use, as is shown in Patch 2. Let’s analyze what the patch
does.

Analyzing Patch 2

• Play a scale on your MIDI keyboard. Notice that as you play you also hear a scale of
short notes moving in the opposite direction.

When you play notes on the synth, the pitch and velocity are sent through stripnote, which
filters out all the note-off messages, passing only the note-ons. Then 33 is subtracted from
the velocity.

• Play some notes very, very softly so that your key-down velocity is less than 33.

This results in negative numbers coming out of the - (minus) object. The hslider limits the
numbers it receives in its inlet, so that none of them is less than 0, and the hslider object’s
Offset of 1 ensures that all velocities are at least 1. The reduced velocity finally arrives in
the middle inlet of makenote and is stored there.

Next, the pitch value comes out of stripnote, and has 127 subtracted from it. This means
that pitches, which usually range from 0 up to 127, will range from -127 up to 0. If you
have a 61-note keyboard, your pitches range from 36 up to 96, and subtracting 127 from
them causes them to range from -91 up to -31.

This number is then sent to an abs object, which sends out the absolute (non-negative)
value of whatever number it receives. So now, instead of your pitches ranging from -91 up

Tutorial 14 Sliders and Dials

55

to -31, they range from 91 down to 31. As you play higher on the keyboard, the numbers
being sent to makenote become lower, and vice versa.

The inverted pitches are paired with the reduced velocity in makenote, and the notes are
sent out, then are turned off after 100 milliseconds (1/10 of a second).

Summary

The hslider and uslider objects are similar to slider, but can be made any size. kslider is a
keyboard- like slider, the Range of which is specified as a number of octaves. You can
perform both chromatic glissandi and diatonic glissandi (white-keys only) on kslider.

The dial, hslider, and uslider objects all limit the numbers they receive in their inlet.
Numbers that exceed the range of these sliders are set to the minimum or maximum
value of the slider. Unlike slider, these other sliders respond to a single mouse click,
without dragging.

The abs object sends out the absolute value of whatever number it receives in its inlet. The
limiting sliders and abs represent two different ways to avoid negative numbers. (Other
objects that can serve this purpose are maximum and split.)

See Also

abs Output the absolute value of the input
dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
split Look for a range of numbers
uslider Output numbers by moving a slider onscreen

56

Tutorial 15: Making Decisions with Comparisons

Relational Operators

One of the most basic things a computer program does is perform some kind of a test,
then make a decision based on the result of that test. The test is usually some kind of
comparison, such as seeing if two numbers are equal. The answer to this test can be used
to determine what the computer does next.

Numbers are compared using relational operators which characterize the relationship of
one number to another with such terms as is less than, is greater than, is equal to, etc. Max
has several relational operator objects, for comparing one number to another:

< means is less than <= means is less than or equal to == means is equal to

> means is greater than >= means is greater than or equal to != means is not equal to

Max’s relational operator objects send out the number 1 if the statement is true, and 0 if
the statement is false. So, for example, to test the statement 7 is greater than 4, you would
send the number 4 to the right inlet of a > object, then trigger the object by sending the
number 7 in the left inlet. Since the statement 7 is greater than 4 is true, the objects sends
out the number 1.

The right operand can also be provided as an argument typed into the object box.

• Drag on the number box at the top of Patch 1. Notice especially the output of each
object as you pass by the number 5.

Tutorial 15 Making Decisions and Comparisons

57

The relational operators normally expect to receive ints in the inlets. Floats are converted
to int before the comparison is made. Like the arithmetic operators, however, the
relational operators can compare floats if there is a float argument typed in.

select

The select object is a special relational operator. If the left operand is equal to the right
operand, a bang is sent out the left outlet. Otherwise, the left operand is passed out the
right outlet. The effect is that every number received in the left inlet gets passed on out
the right outlet except the one select is looking for. When select receives the number it’s
looking for, it sends a bang out the left outlet.

Patch 2 shows that the select object (whose name can be shortened to sel) can actually be
given several arguments, and each argument can be an int, a float or a symbol (i.e., a
word). The input is converted to the proper type (int, float, or symbol) before being
compared to each argument. Notice that the right inlet is not present if there is more than
one argument.

• Click on the different messages. Notice that if the input matches one of the
arguments, a bang is sent out the outlet that corresponds to that argument. If there is
no match, the input is passed out the right outlet.

When the input is an int (such as 4) it is converted to float before being compared with a
float argument. A float input (such as 26.9) is truncated before being compared to an int
argument.

Combining Comparisons with the select object

The select object sends out a bang, which can be used to trigger other objects, and
relational operators send out the numbers 1 and 0, which can be used to toggle something
on and off (such as a metro). So you can see that comparisons can be used in a patch to
decide when to trigger another object.

Tutorial 15 Making Decisions and Comparisons

58

Patch 3 shows the use of sel to look for a certain pitch being played on your MIDI
keyboard.

The pitch is first sent to an % object, which divides it by 12 and sends out the remainder.
Since the note C always has a MIDI key number which is a multiple of 12 (such as 36, 48,
60, etc.), the output of the % 12 object will be 0 whenever the note C is played.

Each time the sel object receives the number 0 from %, it sends a bang to the message boxes,
which send the notes C2, G2, and E3 (48, 55, and 64) to noteout. These pitches are
combined with the velocity of the note C that is being played on the synth, so the chord
has the same velocity and duration as the note being played.

In this example, we test to see if the pitch being played is equal to C. When this is true, the
chord is triggered.

Combining Comparisons with “Or” or “And”

The object || means or. If either the left operator or the right operator is non-zero (true), ||
sends out the number 1. If both operators are 0, it sends out 0.

The object && means and. If the left operator and the right operator are both non-zero, &&
sends out the number 1. Otherwise, it sends out 0.

Tutorial 15 Making Decisions and Comparisons

59

|| and && are used to combine two comparisons into a single statement, such as: a is
greater than b AND c is greater than d.

Note that in the example above, the number 5 (a) must be sent last, so that all the other
values will have arrived when && is triggered.

Patch 4 is similar to Patch 3, but it uses || to look for two pitches instead of one. The patch
says, if the pitch played is B OR it is D, then play the notes G1 and F3. The effect, of course,
is to accompany the notes B and D with an incomplete dominant seventh chord.

• Play a melody in the key of C on your synth. Patches 3 and 4 provide you with an
annoyingly Haydnesque accompaniment.

Using Comparisons to Toggle an Object On and Off

Patches 3 and 4 demonstrate that any number—and thus any key or combination of keys
on the synth—can be used to trigger something in Max. Similarly, the 1 and 0 sent out by
relational operator objects can be used to turn an object such as metro on and off.

Tutorial 15 Making Decisions and Comparisons

60

Patch 5 demonstrates this idea.

• Play the note C6 (high C) on the synth. As soon as you release the key, Patch 5 begins
playing the note repeatedly until the next time you play a note.

The patch is looking for the condition when the pitch is equal to 96 and the velocity is
equal to 0. When both conditions are true, && sends out 1, otherwise && sends out 0.
Obviously, the vast majority of note messages will cause && to send out 0. In order to
avoid sending the number 0 to metro over and over unnecessarily, the output of && is first
sent to a change object. The purpose of change is to filter out repetitions of a number. The
number received in the inlet is sent out the left outlet only if it is different from the
preceding number.

When metro is turned on it sends the number 96 to makenote at the rate of 8 notes per
second (once every 125 ms).

Summary

Relational operators—<, <=, ==, !=, >=, and >—compare two numbers, and report the
result of the comparison by outputting 1 or 0. The && and || objects test whether their
inputs are 0 or non- zero, making them useful for combining two comparisons into a
single test.

The select object (also known as sel) looks for certain numbers (or symbols). If the input
matches what it is looking for, it sends a bang out one of its outlets. Otherwise, it passes
the input out its right outlet.

Tutorial 15 Making Decisions and Comparisons

61

The results of any of these comparisons can be used by the program to make a decision
whether to trigger other objects.

The change objects passes on a number received in its inlet, only if the number is different
from the preceding one.

See Also

change Filter out repetitions of a number
select Select certain inputs, pass the rest on
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
!= Compare two numbers, output 1 if they are not equal
>= Is greater than or equal to, comparison of two numbers
> Is greater than, comparison of two numbers

62

Tutorial 16: More MIDI Ins and Outs

Introduction

There are many MIDI objects besides notein and noteout. Objects exist for receiving and
transmitting any kind of MIDI message. In this chapter, we introduce a few of these
objects: bendin and bendout for pitchbend messages, pgmin and pgmout for program change
messages, and ctlin and ctlout for continuous controller messages.

Like notein and noteout, these other objects can be given optional arguments to specify the
port and MIDI channel on which they will operate. When a channel number is specified
as an argument in a MIDI receiving object, the outlet for sending the channel number
disappears.

bendin and bendout

bendin receives data from the pitch bend wheel of your MIDI keyboard. The channel is
sent out the right outlet, and the pitch bend data (the amount of pitch bend) is sent out
the left outlet. Pitch bend data ranges from 0 to 127, with 64 meaning no bend at all.

The first patch demonstrates how easily one kind of MIDI data can be given a different
meaning. In this case, the velocity of the notes played on the synth is sent to bendout to
control the pitch bend.

• Play a single note repeatedly on the synth. The pitch is bent upward when you play
hard (when the velocity is greater than 64), and is bent downward when you play
softly.

Tutorial 16 More MIDI Ins and Outs

63

Notice the way that sel is used to filter out note-off velocities. If this were not done, the
pitch would be bent down to 0 each time a key is released, which might be bothersome in
some cases. (On the other hand, triggering pitch bends with note-offs could be an
interesting effect.)

pgmin and pgmout

MIDI program change messages change the sound a synthesizer uses to play notes.
Almost all synths can receive program change messages, and many can send them as well.

Different synths have different numbers of possible sounds, and have different ways of
numbering their sounds. Some synths start numbering sounds from 0, while others start
from 1. Others use unique numbering systems, such as a letter-number combination
simulating base-8 arithmetic, etc.

• Use the dial in the second patch to send program change messages to the synth.

• The dial sends out numbers from 1 to 32. If this is not appropriate for your synth, you
can change the Dial Range and Offset. Unlock the Patcher window, select the dial, and
choose Get Info… from the Object menu.

ctlin and ctlout

A control change message contains three vital items of information: the channel, the
controller number, and the control data. The meaning of the data is dependent on the
controller number. For example, controller number 1 is usually assigned to the
modulation wheel, controller 7 to volume, etc.

Tutorial 16 More MIDI Ins and Outs

64

Therefore, in addition to port and channel arguments, ctlin and ctlout can be given a
specific controller number as an argument, immediately after the port argument (if
present). When a specific controller number is given as an argument to ctlin, the
controller number outlet disappears. For more about the arguments and their default
values, look under ctlin and ctlout in the Max Reference Manual.

Reassigning Control Data

You can use a continuous MIDI controller to send a stream of numbers to Max, then use
those numbers in any way you like. In this patch, the data from the mod wheel of the
synth is used to send pitch values back to the synth.

• Move the modulation wheel on your MIDI keyboard, and you should hear notes play.

The speedlim object limits the speed with which numbers can pass through it. When
speedlim receives a number, it sends the number out the outlet, then waits a certain
number of milliseconds before it will receive another number. The number of
milliseconds between numbers can be a typed-in argument and/or supplied in the right
inlet.

Tutorial 16 More MIDI Ins and Outs

65

Channel Mode Messages

Controller numbers 122 to 127 are reserved for special MIDI commands known as
channel mode messages. Channel mode messages can be received and transmitted with
ctlin and ctlout, just like any other control message.

The last patch shows an example of ctlout used to transmit a channel mode message
meaning All Notes Off (controller number 123 with a value of 0). Many synths (but not
all) recognize this message and turn off all notes currently being played. For turning off
notes within Max, it’s more reliable to use an object such as flush or poly.

The patch also demonstrates that ctlout (and the other transmitting objects) can receive
values for all inlets in the form of a list in the left inlet. When there are no arguments,
ctlout transmits on channel 1 out port a.

Summary

Pitch bend messages are received and transmitted with bendin and bendout, program
changes with pgmin and pgmout, and continuous control messages (and channel mode
messages) with ctlin and ctlout.

MIDI data can be altered and reassigned in any way within Max.

A stream of numbers can be “slowed down” by filtering them with speedlim, which
ignores some of the numbers if they arrive too fast. This is a good method of converting a
continuous stream of numbers into regular, discrete steps.

See Also

bendin Output incoming MIDI pitch bend values
bendout Transmit MIDI pitch bend messages
ctlin Output incoming MIDI control values
ctlout Transmit MIDI control messages
pgmin Output incoming MIDI program change values
pgmout Transmit MIDI program change messages

Tutorial 16 More MIDI Ins and Outs

66

speedlim Limit the speed with which numbers can pass through

67

Tutorial 17: Gates and Switches

Ggate

In Tutorial 15 we saw examples of how to use comparisons to make a decision whether to
send a message. It is also possible for objects to make decisions about where to send a
message.

The patch in the upper-left corner shows a graphical object, Ggate, for routing incoming
messages out one outlet or the other. Messages received in the right inlet are sent out
whichever outlet is pointed at by the arrow. The direction of the arrow can be changed by
clicking on Ggate with the mouse, sending a bang to the left inlet, or sending a zero or non-
zero number to the left inlet.

When the number in the left inlet is 0, the arrow points to the left outlet. A non-zero
number in the left inlet causes the arrow to point to the right outlet. In the example
above, the toggle has sent the number 1 to the left inlet of Ggate, causing the arrow to point
to the right outlet. Consequently, any message received in the right inlet is passed out the
right outlet.

• Try the various methods of changing the direction of the arrow, then drag on the
number box to send numbers to the right inlet of Ggate.

Tutorial 17 Gates and Switches

68

Gswitch

The second patch shows a similar object, Gswitch, which can open one of two inlets.
Whichever inlet the arrow points to is the open inlet, and messages received in that inlet
are passed out the outlet. Messages received in the closed inlet are ignored. The leftmost
inlet is the control inlet, for switching the arrow back and forth. It functions like the left
inlet of Ggate.

• Click on the two message boxes to send messages to Gswitch. Only the message received
in the open inlet is sent out the outlet. Change the direction of the arrow and try
again.

Ggate and Gswitch will pass on any type of message—numbers, lists, and text.

gate

The gate object is like Ggate, with a few important differences:

1. The number of outlets is determined by the argument to gate. A single outlet is
opened when its number is received in the left inlet. All other outlets are closed.

2. When the number 0 is received in the left inlet, all outlets are closed.

3. A gate does not respond to a mouse click the way Ggate does.

Tutorial 17 Gates and Switches

69

• Send a number to the left inlet of gate to open one of the outlets (or 0 to close all
outlets), then send numbers to the right inlet.

You can see that gate can be used to route messages to any of a number of destinations,
just by specifying which outlet the messages are to be sent out.

switch

The switch object opens one of several inlets to receive messages, and ignores messages
received in the other inlets. The leftmost inlet is the control inlet, as with gate, and the
remaining inlets can receive any message to be sent out the outlet if the inlet is open. The
number of inlets—in addition to the control inlet—is specified by the argument. (There
can be as many as 9.)

• Send a number to the leftmost inlet of switch to open one of the inlets (or 0 to close all
inlets). Then send numbers to the other inlets, and you will see that only the one inlet
you specified is open.

Using switch, you can have messages coming into individual inlets from several different
objects, but switch “listens to” only one of its inlets.

Any type of message can be passed through gate or switch.

Left Inlet Is Control Inlet

Unlike most objects—which are triggered by a message received in the left inlet—gate,
switch, Ggate, and Gswitch all use the left inlet as a control inlet, for telling which inlet or

Tutorial 17 Gates and Switches

70

outlet is to be open. Messages received in the other inlet(s) are then sent out the
appropriate outlet.

route

One other valuable traffic controller is route, sort of a cross between sel and gate. When
route receives a message in its inlet, it compares the first item in the message to each of its
arguments. If it finds a match, it sends the rest of the message out the corresponding
outlet. If there is no match, the entire message is sent out the rightmost outlet. route is
especially useful when it is sent a list (several items separated by spaces).

• Click on the different message boxes and observe what is printed in the Max window.

The number of outlets route has depends on how many arguments are typed in. Each
argument is an identifier for an outlet, and an additional outlet on the right sends out any
messages not matched by route.

Like select, route looks only for certain inputs, and if there is no match it passes the
message on unchanged. One important difference between select and route is that when
select receives a match for one of its arguments, it sends a bang out the corresponding
outlet. When route receives a match, it sends out the rest of the message. (Unless there is
no rest of the message, in which case it sends out bang.)

Summary

The gate and Ggate objects receive messages in their right inlet, and send the messages out
only one of their outlets, depending on which outlet has been specified as open. The switch
and Gswitch objects receive messages in only one of their inlets, depending on which inlet
has been specified as open.

Tutorial 17 Gates and Switches

71

The route object tries to match the first item of each incoming message to one of its
arguments. If a match is found, route sends the rest of the message out the appropriate
outlet (if there is no “rest of message”, route sends a bang to the appropriate outlet). If
there is no match, the entire message is sent out the rightmost outlet.

Routing objects can be used to filter messages coming from many different
objects—passing on only those messages which arrive in a particular inlet—or they can be
used to send incoming messages to one of many destinations.

See Also

gate Pass the input out a specific outlet
Ggate Pass the input out one of two outlets
Gswitch Receive the input in one of two inlets
route Selectively pass the input out a specific outlet
switch Receive the input in a specific inlet

72

Tutorial 18: Test 3—Comparisons and Decisions

Comparisons and Decisions

You can write a patch that examines the notes being played on your MIDI keyboard, and
makes a decision about what to do, based on the note information. Here is an exercise to
test your understanding of the use of comparisons to make decisions.

• Make a patch that receives the notes being played on your MIDI keyboard and, if the
note is Middle C (MIDI note 60) or higher, plays the notes an octave lower and an
octave higher than the played pitch.

Hints

A comparison is needed to find out if the pitch being played is greater than or equal to 60.

Based on that comparison, a decision is made to play or not to play the notes an octave
lower (12 semitones less) and an octave higher (12 semitones more) than the original
pitch.

If the original pitch is less than 60, nothing needs to be done, but if the pitch is greater
than or equal to 60, two new pitches need to be generated. The original pitch must have
12 subtracted from it to get the lower pitch, and it must have 12 added to it to get the
higher pitch.

The new pitches must be combined with a velocity (perhaps the velocity of the original
played note) to send note-on and note-off messages to the synth.

• Scroll the Patcher window to the right to see two possible solutions to the problem.

Tutorial 18 Test 3—Comparisons and Decisions

73

Solution 1

Both solutions use the relational operator >= to find out if the played pitch is greater than
or equal to 60. Each solution uses the result of that comparison in slightly different ways.

In Solution 1, a successful comparison results in a decision to trigger the numbers -12 and
12. The pitch is stored in the right inlet of a + object before the comparison is made. Then,
if the pitch is greater than or equal to 60, the >= object sends out 1, causing the sel object
to trigger the messages -12 and 12. These two numbers are added to the original pitch, and
the sums are sent to noteout, where they are combined with the velocity of the played
note, triggering note messages to the synth. This process occurs both for note-ons and
note-offs, so the transposed pitches are successfully played and turned off.

Tutorial 18 Test 3—Comparisons and Decisions

74

In Solution 2, a successful comparison opens a gate, letting the pitch through, so that only
pitches greater than or equal to 60 will be passed on.

The placement of the >= object is of utmost importance. Because it is to the right of the
gate object, it receives the pitch first, and either opens or shuts the gate before the pitch
arrives at the gate.

When a pitch is let through, it has 12 subtracted from it in one object, and has 12 added to
it in another object. The results are sent to noteout as pitches, where they are combined
with the original played velocity (both for note-ons and note-offs).

Note: The notein and noteout objects in Solution 2 are set to receive and transmit on MIDI
channel 2 only so that a note from your MIDI keyboard won’t cause both patches to react.

Summary

In this exercise, the comparison >= 60 was used to trigger messages in one case, and to
open a gate in another case. Either method could be incorporated in a solution to the
problem.

To perform a test and make a decision, ask yourself these questions:

1. What do I need to know to make the decision? (What will be tested?)

2. What action will be taken if the test is successful (true)?

3. What action will be taken if the test is unsuccessful (false)?

75

Tutorial 19: Screen Aesthetics

Segmented Patch Cords

So far we have been making patch cord connections with straight patch cords, by
dragging from the outlet of one object to the inlet of another object. In complicated
patches, though, it would be nice if we could bend patch cords around objects, to keep
things from getting too messy.

When Segmented Patch Cords is checked in the Options menu, patch cords can be made
up of as many as 10 line segments, allowing them to bend around objects. Segmented
patch cords function no differently from straight patch cords, and they can often make a
patch neater and more comprehensible.

The method of connecting objects is a little different when the Segmented Patch Cords
option is in effect. Instead of dragging from outlet to inlet, the method is to click on the
outlet, then click at each of the points where you want the patch cord to bend, then click
on the inlet of the receiving object.

The patch in the left part of the Patcher window shows how segmented patch cords can
be used to give the patch a neater look, making it easier to understand how the patch
functions.

Tutorial 19 Screen Aesthetics

76

Of course, sometimes segmented patch cords can make a patch less clear to the eye. In the
following example, the user cannot be certain where the top-left number box is connected,
without actually changing the number to see which of the lower three values changes, too:

Note that you don’t need to turn the Segmented Patch Cords option on in order to make
patch cords that turn corners. Shift-clicking on an outlet will allow you to connect a patch
cord in “segmented” mode.

Hide On Lock

• Unlock the Patcher window. You will see several objects and patch cords that were
not visible before.

When editing a patch, you can select objects and/or patch cords and choose Hide On
Lock from the Object menu. This sets those objects to be invisible when the Patcher
window is locked. Show On Lock makes objects visible which were previously made
invisible with Hide On Lock.

Hide On Lock is an invaluable feature for making patches with a good user interface. For
example, in the patch in the right part of the Patcher window, there is no reason that the
user needs to see the pgmout object and the patch cords connecting the various objects. All
that the user of your patch needs or wants to see is the dial, the label (comment), and the
number being sent out by the dial.

The Hide On Lock command lets you hide unsightly parts of a patch

Tutorial 19 Screen Aesthetics

77

Note: If you select a region of the Patcher window and hide several objects at once with
Hide On Lock, the objects will be hidden but the patch cords will still be visible. To hide
patch cords, you must select them before choosing Hide On Lock. You can select patch
cords by holding down the Option key on Macintosh or the Alt key on Windows while
dragging a box around a group of objects. Alternatively, choosing Select All from the Edit
menu selects all boxes and patch cords, or you can just click on patch cords individually,
using the shift key to select multiple objects.

Graphical user interface objects (such as button, toggle, dial, etc.) that have been hidden
with Hide On Lock do not respond to clicking and dragging with the mouse.

Paste Picture

Your completed patch can actually have any visual appearance you choose, because you
can import pictures from other applications such as painting and drawing programs. Cut
or Copy the picture from another application, then in Max, choose Paste Picture from
the Edit menu to paste the picture into a Patcher window.

For example, the decorative border around the dial in this patch is actually just a frame
drawn in a painting program. The dial was then placed on top of the frame to give the
illusion of a different kind of dial.

dial + frame = decorated dial

Similarly, the two buttons marked OFF and ON are not actual Max objects. They are
pictures that were drawn in another program and pasted in with the Paste Picture
command.

The Max icon was placed in the Patcher window by a different method; it is contained
inside an fpic object. If you have designed a picture and saved it as a graphics file, fpic can
load that external file into memory when the patch is opened.

Tutorial 19 Screen Aesthetics

78

After you place the fpic object in the Patcher window, while it is still selected, choose Get
Info… from the Object menu. The fpic Inspector will appear. Click the Choose... button
and a standard open file dialog appears. After you choose the desired graphics file, you
can resize the fpic to display as much or as little of the picture as you want.

When you save the patch, fpic saves a reference to the graphics file so that can will load
that picture automatically the next time the patch is opened. With this method, the
graphic is not saved as part of the patch. If you are using the same graphic in several
patches, you can save memory and disk space by using fpic objects that all reference the
same file. You must take care, of course, that the file is located where Max can find it. See
the discussion of the file search path in the Overview section of the Fundamentals
manual.

(The Max icon in this particular patch doesn’t do anything. It’s just there to demonstrate
the fpic object, which loads in a small graphics file containing a picture of the Max icon.)

Clicking on a Picture

• Lock the Patcher window and click on the picture of a button marked ON. The metro
object is started, just as if you had clicked on the toggle. Click on the picture of an OFF
button to stop the metro.

We know that the OFF and ON buttons are just pictures, so how do they turn the metro
off and on? The pictures seem to respond to a mouse click because transparent
buttons—ubutton objects—have been placed on top of them.

The ubutton object is a rectangular button that becomes invisible when the Patcher
window is locked. When you click down on a ubutton, it sends a bang out its second outlet
and inverts the part of the screen it covers. When the mouse button is released, ubutton
sends a bang out its left outlet and becomes transparent again.

A ubutton can be placed over a picture or a comment (or over nothing, for that matter, if
you just want an invisible button) to make that portion of the screen respond to a mouse

Tutorial 19 Screen Aesthetics

79

click. The pixel- inverting feature of ubutton can also be used to highlight a spot on the
screen. Look under ubutton in the Max Reference Manual for details.

Tutorial 19 Screen Aesthetics

80

The connections between the ubutton objects and the toggle are hidden from sight with the
Hide On Lock command.

Coloring and Resizing Objects

In addition to adding color to your patches by pasting in pictures, you can set certain user
interface objects to a color other than gray by selecting them and choosing a color from
the Color submenu of the Object menu. Objects that can be colored in this way include
button, dial, hslider, rslider, and uslider. (The color of the led object is set by selecting it and
choosing Get Info... from the Object menu.) If you have selected an object that cannot be
colored, the Color submenu will be disabled in the Object menu.

You can color the top and bottom edges of an object box by using the Color submenu of
the Object menu.

Many objects allow you to change their colors with RGB values; this is normally done
using the object's Inspector window. These patchers are opened when you choose Get
Info... from the Object menu with a single object selected.

The size of objects can be altered by dragging on the grow bar in the bottom-right corner
of the object. This lets you customize the look of the graphical objects in your Max
patches.

0
Different objects, resized to be the same size and shape

Tutorial 19 Screen Aesthetics

81

Summary

The Segmented Patch Cords option lets you create patch cords that bend around objects,
making your patches easier to understand. You can also create segmented patch cords
without this option turned on by shift-clicking on an outlet.

Objects and patch cords can be hidden from the sight of the user with the Hide On Lock
command, so that the user sees only those things you want seen. Objects which have been
hidden with Hide On Lock do not respond to clicking and dragging with the mouse.

Pictures can be imported from graphics applications and placed in a Patcher window with
the Paste Picture command. A picture can be loaded from a graphics file on disk and
displayed in a Patcher with the fpic object.

Graphical objects can be resized by dragging on the grow bar in the bottom-right corner
of the object box. The color of some objects can be changed by selecting them and
choosing the Color command from the Object menu. The appearance of a graphical
object can also be altered by pasting a picture around it to serve as a frame.

The transparent button object, ubutton, lets you make any portion of the screen respond
to clicks from the mouse.

The combination of these features lets you design the screen to have almost any
imaginable appearance and respond to the mouse in a variety of ways.

See Also

fpic Display a picture from a graphics file
ubutton Transparent button, sends a bang
Menus (Fundamentals) Explanation of commands

82

Tutorial 20: Using the Computer Keyboard

ASCII Objects

When you type a key on your computer keyboard, a message is sent to the computer
telling it which key you typed. Max has objects for receiving and interpreting this
information.

The American Standard Code for Information Interchange (ASCII) is the standard system
of key numbering. The key object receives key down messages from the computer
keyboard and sends the ASCII number of the typed key out its left outlet. (Because key
receives its input directly from the computer keyboard, it has no inlet.) The ASCII
number can then be used in a patch just like any other number.

The keyup object is similar to key, but it sends out the ACSII number of a key when it is
released (when a key up message is received from the keyboard). The numkey object
receives ASCII numbers from a key or keyup object, and deciphers them to determine if a
number is being typed in on the keyboard. It reports the value of the number the user is
entering.

key

This example contains a single, rather complex patch. At the top of Part A is a key object.
Every time you press a key on the computer keyboard, key sends the ASCII number of
that key out its left outlet. The ACSII number is sent to an object called split.

split

The split object is a combination of relational operator and gate. It looks for a specific
range of numbers. If the number received in the left inlet is within the specified range, it
is sent out the left outlet. Otherwise it is sent out the right outlet.

Tutorial 20 Using the Computer Keyboard

83

The minimum and maximum values of a split object’s range can be typed in as arguments
and/or they can be supplied in the middle and right inlets. In this case, ASCII numbers
120 through 122 (keys x, y, and z) are sent out the left outlet, and all other numbers are sent
out the right outlet.

Using Key Commands to Control a gate

Let’s see what happens when the keys x, y, and z (120, 121, and 122) are typed. First of all,
120 is subtracted from the key number, resulting in the numbers 0, 1, and 2. These
numbers are used to control a gate. The letter x closes the gate, the letter y opens the left
outlet, and the letter z opens the right outlet.

Pitch information from notein is passed through the open outlet of the gate. So, if the
letter y is typed, pitches are passed to the - 12 object and are transposed down an octave. If
the letter z is typed, the pitches are passed to the + 12 object and are transposed up an
octave. If x is typed, the gate is closed and no pitches are passed through.

Tutorial 20 Using the Computer Keyboard

84

The transposed pitches are combined with velocities in the flush object, and are sent to
noteout.

• Type the different key commands x, y, and z, and listen to the change in effect for
each command when you play on your MIDI keyboard.

Turning Off Transposed Notes

At first glance, the flush object may seem to be unnecessary in this patch. Why can’t the
pitches be combined with velocities right in noteout? They can, but this would leave open
the possibility that some note-off messages would not be received by the synth. Consider
the following scenario.

Suppose you type the letter y to transpose pitches down an octave. Then you play and
hold down the note C3 (60) on your MIDI keyboard. This will cause the note 48 to be
sent to noteout. Before you release the note 60 on your keyboard, you type z to transpose
pitches up an octave. Now when you release the note 60, a note-off for note 72 will be sent
to the synth. The note 48 will not get turned off.

Tutorial 20 Using the Computer Keyboard

85

To solve this potential problem, the notes are sent first to a flush object. Each time a
number is received in the left inlet of gate, a bang is also sent to flush to turn off any held
notes. In this way, note-offs are always provided for any notes that are being held when
the status of gate is changed.

Whenever a gate control number is received, a bang is sent to flush

Of course, if you never play notes and give commands at the same time, this precaution is
unnecessary. As a general rule, though, whenever you are processing notes (for example,
transposing them) it’s good to make sure that a note-on message is always followed by a
corresponding note- off message. Changing the transposition, closing a gate, etc. while a
note is being played can often cause this sort of problem.

numkey

Part B of the patch shows how numkey interprets numbers typed on the computer
keyboard. ASCII values from the key object are sent to numkey (except for the keys x, y,
and z, which numkey ignores anyway because they are not numerical digit keys).

As digits are typed, numkey sends the current number out its right outlet. The Delete
(Backspace) key can be typed to erase the last digit entered. When you have typed in the
complete number, you can type the Return or Enter keys on Macintosh or the Enter kay
on Windows to send the number out the left outlet. In general, the right outlet is used for
showing what number is being typed, and the left outlet is used for actually sending it.

• Try changing the sound on your synth by typing in the program number on the
computer keyboard.

Tutorial 20 Using the Computer Keyboard

86

Using a combination of key and numkey to type in numbers is different from typing
numbers directly into a number box, because you have to click on the number box before
typing into it. The key and keyup objects receive all typed keys, so there is no need to select
any object before numbers are typed in via numkey.

keyup

Typing a key on the computer’s keyboard, just like playing a note on your MIDI
keyboard, sends two messages to the computer—one when the key is pressed down, and
another when the key is released. The keyup objects sends the ASCII number of any key
that is released.

In Part C of the patch, we measure the time that a key is held down by measuring the time
between arrival of a number sent by key and a number sent by keyup.

timer

In Part C, we use sel objects to look for specific ASCII values. Both sel objects look for the
number 116, which is the key t. (We chose t as a mnemonic for tempo.) When t is pressed
down a bang is sent to the left inlet of a timer object. When the key t is released a bang is
sent to the right inlet of the timer.

The timer object outputs the number of milliseconds between a bang received in its left
inlet and a bang received in its right inlet.

Note: timer is an exception to the general rule of the left inlet being the one that triggers
output. In this case, a bang in the left inlet starts the timing process, but the right inlet is
the one that causes the elapsed time to be sent out.

Using Duration to Set Tempo

This patch uses the duration that a key is held down to set the speed of a metronome.
When the key t is released, a bang is sent to the right outlet of timer, which reports the time
that the key was held down. (We used the message from key to start the timer.)

Tutorial 20 Using the Computer Keyboard

87

The time is sent to the right inlet of metro, and is also divided by 2 and sent to the right
inlet of makenote. In this way, the duration of the notes played will be 1/2 the amount of
time between notes, giving a staccato effect.

The release of the t key also starts the metro. Notice that the timer is triggered before the
metro, so that the time values will arrive in metro and makenote before metro is started.

The metro sends the pitch 96 to makenote until the period key (.) is typed to stop the metro.

• Hold the t key down for various lengths of time and listen to the change in the tempo
of the metro (and the duration of the notes). Type the period key (.) to stop the metro.

Summary

The key object reports the ASCII code of keys typed on the computer’s keyboard. The
keyup object reports the ASCII code of keys when they are released. The numkey object
interprets ASCII received from key or keyup, and reports any numerical values being
typed.

ASCII values from key or keyup can be used to send commands to a patch, opening a gate
or triggering processes. A relational operator such as sel can be used to look for certain
keys being typed.

The split object looks for numbers within a certain range. If an incoming number is
within range, it is sent out the left outlet, otherwise it is sent out the right outlet.

The elapsed time between any two events can be reported with timer. The timer is started
by a bang received in its left inlet, and the elapsed time is sent out when a bang is received
in the right inlet.

Tutorial 20 Using the Computer Keyboard

88

See Also

key Report keys typed on the computer’s keyboard
keyup Report keys released on the computer’s keyboard
numkey Interpret numbers typed on the computer’s keyboard
split Look for a range of numbers
timer Report elapsed time between two events

89

Tutorial 21: Storing Numbers

Variables

In traditional programming languages, variables are places in memory used by a program
to store numbers so they can be recalled at a later time.

Many objects in Max are capable of storing a number and recalling it later. For example,
the number box will send out the number stored in it when it receives a bang message.

In this tutorial, we’ll use objects that do nothing but store a number and send it out when
a bang is received in the left inlet. These objects are int for storing integer numbers, and
float for storing decimal numbers.

int and float

When a number is received in the left inlet of an int or a float object, it is stored and sent
out the outlet. Whenever a bang is received in the left inlet, the stored number is sent out
again.

When a number is received in the right inlet, it is stored without triggering any output
(replacing the previously stored value).

The int and float objects both function in exactly the same way. The only difference is the
type of number they store. When a number with a decimal point (float) is received by an
int object, the number is converted to an int before being stored, and vice versa.

An initial value to be stored in int or float can be typed in as an argument. If there is no
argument, the objects initially store the number 0.

Tutorial 21 Storing Numbers

90

Using float

The patch in the left part of the Patcher window uses both int and float. Once we
understand what the patch does, the need for these objects should be clear.

The combination of notein and stripnote should be familiar to you. It’s the easiest method
of getting note-on data from a MIDI keyboard (without getting note-off data).

The velocity is converted to three separate messages by the t (trigger) object: a float, a bang,
and another float. The first float (from the right outlet of t) is sent to the right inlet of the
/ object, where it is stored. The bang then causes the float object to send out its stored
number.

This triggers a series of calculations, finally resulting in a number being sent to the right
inlets of makenote and metro. Then the last float (from the left outlet of t) is stored in the
float object.

What this means is that each time a new velocity is received, the previous velocity is
divided by the new velocity, then the new velocity is stored as the “previous” one. The
result is the ratio of the old velocity to the new velocity.

Note: The velocity could just as well be stored in an int object, but it is converted to float
by the / object in any case. Since the conversion from int to float has to occur somewhere,
we made the conversion with the t object.

Tutorial 21 Storing Numbers

91

Why do we need to divide the two velocities as floats? Consider the possible cases. The
range of possible ratios between two note-on velocities is from 1/127 to 127/1, (i.e., from
0.007874 to 127.0). Whenever the previous velocity is less than the new one, the ratio will
be some fraction between 0 and 1. But if we performed an integer division, the result
would always be 0 when the velocity is increasing.

Float division is needed to get the precise ratio between two velocities

The ratio is then multiplied by 250 (again the numbers are calculated as floats, so that
ratios less than 1 are not converted to 0 before the multiplication), and the result is used
as the new note duration for makenote and the new tempo for metro.

However, not all the numbers we get this way are really suitable as musical values.
Extreme changes in velocity result in very small or very large numbers. The range of
possible values in this calculation can be as small as 1.9685 (which will be truncated to 1
when it is converted to int) and as great as 31750. So, we use split to limit the values
between 40 milliseconds (25 notes per second) and 2000 milliseconds (one note every 2
seconds). Numbers that exceed these limits will be ignored. The split object automatically
converts the floats back to ints.

• Play a few notes on your MIDI keyboard, and observe how changes in velocity affect
the numbers being sent out of split. When the velocity is increasing, the numbers are
less than 250. When the velocity is decreasing the numbers are greater than 250.
Extreme changes in velocity result in extremely large or small numbers, which are
ignored by split.

Using int

What happens next in our patch? The velocity is sent to the middle inlet of makenote,
where it is stored. Then the pitch value is stored in the int object.

Well, so far we’ve seen that a lot of numbers get stored, calculated, and changed by
playing on the synth, but nothing else happens...until we turn on the metro. The bang

Tutorial 21 Storing Numbers

92

messages from the metro trigger the int object, which sends out its number—whatever
pitch was most recently played—to makenote. The speed of the metro is dependent on the
change in velocity between successive notes played on the synth.

• Turn on the metro and play on your MIDI keyboard. Notice how you can affect the
speed, velocity, and duration of the repeated notes by changing the velocity with
which you play.

accum

Another storage object, accum, performs internal additions and multiplications to change
its stored value.

The left inlet of accum functions just like that of the int and float objects: a number
received in the left inlet is stored and sent out the outlet, and a bang sends the stored
number out again. However, the middle and right inlets of accum are used to add to the
stored number or multiply the stored number, respectively. The number is changed
without anything being sent out the outlet.

An initial value to be stored in accum can be typed in as an argument. If there is no
argument, the object initially stores the number 0. The value stored in accum is normally
an int, but if the typed- in argument contains a decimal point accum stores a float.
Multiplication in accum is always done with floats, even if the stored number is an int.

Using accum

The accum object is most useful for storing a value that you wish to change often by
adding to it or multiplying it. For example, you may want to continually increment a
number by adding some amount to it over and over. The second patch in the Patcher
window shows an example of incrementing.

Tutorial 21 Storing Numbers

93

• Click on the toggle to start the metro. Notice how the pitch, velocity, and duration
values sent to makenote change continually. The amount of change is directly related
to the numbers being added or multiplied in the accum objects.

Each time the accum objects receive a bang from the metro, they send their stored values to
makenote, and they also trigger message boxes which add some number back into the
stored value or multiply the stored value by some amount. (Note: Until now we’ve usually
triggered the message box with a bang, but it can also be triggered with a number.)

The result is that the accum objects change their own stored value each time they receive a
bang.

These values would soon exceed reasonable ranges unless we place some kind of
restriction on them. In this patch, numbers sent to makenote loop repeatedly through
cycles of different lengths. Two methods of looping are shown.

The accum that sends durations to makenote (and tempos to metro) starts at 1000, and
multiplies itself by 0.9 every time it sends out a number. Eventually the number is reduced
to be less than 40. When this happens, the message set 1000 is sent to the left inlet of accum,
resetting its stored value.

We have already seen a set message used to set the value of a slider without triggering
output. It has the same effect when sent to the left inlet of accum. Every time the value of
the accum goes below 40, it is reset to 1000 and the cycle begins again.

The tempo of the metro is also set back to 1000 at the same time, by sending a bang to the
1000 object. An object box that contains only a number is actually an int object (or a float
object if the number contains a decimal point) with its initial value set to that number.

This shows the basic method of looping: change a value continually until some condition
is met (for example, until it exceeds some limit), then reset the value and begin again.

The values stored in the other two accum objects continue to increase without being reset,
but the modulo operator % limits the numbers so that they always cycle within a limited
range. Using the % object is another good way of looping.

Tutorial 21 Storing Numbers

94

Loops Can Create Cyclical Patterns

Using loops in a program is a way of creating periodicities. In this patch, the parameters of
duration, velocity, and pitch all have a different periodicity of recurrence, which makes
the music seem to repeat itself while always changing slightly.

Actually, the duration changes according to a 32-note cycle, the velocity changes
according to a 118-note cycle, and the pitch changes according to a 37-note cycle. Thus,
the entire pattern is repeated every 69,856 notes—about every 6 hours. Not a melody
likely to get stuck in your head.

Overdrive

Max can get rather busy playing music, running metronomes, doing mathematical
calculations and printing numbers on the screen. Checking Overdrive in the Options
menu causes Max to give priority to music-making tasks, and results in more accurate
musical timing. If you hear improper delays on notes, or erratic performance, try
enabling Overdrive.

Summary

Integer numbers can be stored in an int object, and sent out later by triggering int with a
bang in its left inlet. Numbers with a decimal point can be similarly stored and recalled

Tutorial 21 Storing Numbers

95

with a float object. The accum object can store and recall either an int or a float value, and
can add to or multiply the stored value without sending it out.

Floats are useful for calculations that involve numbers between 0 and 1, or for any
calculation that requires additional precision.

The split object is useful for limiting numbers to a specific range. All numbers it receives
that are within its specified range are sent out its left outlet. Otherwise, they are sent out
its right outlet.

Cycles of numbers can be produced by looping. A loop is created by continually changing
a number, then resetting it when the number meets a certain condition. The accum object
is well suited for such looping schemes.

See Also

accum Store, add to, and multiply a number
float Store a decimal number
int Store an integer number
Loops (Max Topics) Using loops to perform repeated operations

96

Tutorial 22: Delay Lines

Delaying Numbers and bang messages

Messages normally pass through patch cords as fast as the computer can send them.
However, you can also delay numbers, lists, or bang messages for a certain amount of time
before sending them on their way. This is useful for creating a specific time lag between
messages, or delaying notes to create echo effects.

The pipe object delays the numbers it receives for a certain amount of time before sending
them on. The delay object (also called del) delays a bang for a certain amount of time before
sending it on.

pipe

• Drag on the number box at the top of Patch 1. The numbers are all delayed for 2000
milliseconds by the pipe object.

Each number is sent out the outlet a certain amount of time after it is received, so pipe can
delay many numbers and send them out later in the same rhythm in which they were
received. A number received in the right inlet sets the delay time, in milliseconds, to be
applied to all numbers subsequently received in the left inlet. A clear message received in
the left inlet erases any numbers currently being delayed in the pipe.

• Send some more numbers to the left inlet of the pipe in Patch 1, then quickly click on
the word clear. Any numbers not yet passed through the pipe are forgotten.

Tutorial 22 Delay Lines

97

delay

• Click on the button at the top of Patch 2. The bang is delayed for 2000 milliseconds
before being sent out the outlet of the delay object.

Unlike pipe, which can keep track of many numbers at a time, delay can keep track of only
one bang at a time. If delay receives a new bang while it’s already delaying a bang, the old bang
is lost and the new bang is delayed instead.

• Send many bang messages to delay in quick succession. Each bang received within 2
seconds of the previous one erases the previous one, so only the last bang gets sent out
the output.

A number received in the right inlet of delay sets the delay time to be applied to any bang
subsequently received in the left inlet. A stop message received in the left inlet stops any
bang currently being delayed.

• Send another bang to delay, then quickly click on the word stop. The bang is not sent out.

Delaying Groups of Numbers

A single pipe object can actually delay several parallel streams of numbers—such as pitch,
velocity, and channel information from notein—with a separate pair of inlets and outlets
for each stream. To make a pipe with more than one outlet, type in one number argument
for each stream of numbers you want to delay, plus an argument for the delay time. The
last argument is always the delay time.

Arguments set initial value for each delay line.
Last argument is the delay time.

Tutorial 22 Delay Lines

98

As with most objects, it’s the left inlet that triggers the pipe. When a number is received in
the left inlet, it is delayed along with whatever number was most recently received in the
other delay line inlets. If no number has been received in the other inlets, pipe uses the
initial value named in the argument, as in the example above. The numbers can also be
received together as a list in the left inlet, with an additional number included at the end
of the list to specify the delay time.

Patch 3 shows a pipe that delays three streams of numbers. The channel and velocity
values from notein are received, and then the pitch value triggers the delay of all three
numbers. The delay time can be changed by sending a new number to the right inlet of
pipe.

• Try playing on your MIDI keyboard using different delay times.

random

Each time the random object receives a bang in its left inlet, it chooses a number at random
and sends the number out the outlet. The range of numbers from which random chooses is
determined by typing in an argument or by sending a number in the right inlet. The
random values will always be between 0 and one less than the argument.

Different uses of random numbers will be seen in the course of the Tutorial.

Using Delayed Triggers

In Patch 4 the metro triggers random to send out a random number between 0 and 60 once
every 720 milliseconds. 36 is added to the number to bring it up into the range of a 61-key
MIDI keyboard, and it is then transmitted as a pitch to be played on the synth.

Tutorial 22 Delay Lines

99

The bang from metro is also sent to the del object, where it is delayed a certain time before
being sent to random. A new randomly chosen number is then sent out, so actually two
notes are played every 720ms. The rhythm between the two notes depends on the delay
time sent to the right inlet of del from the hslider.

• Turn on the metro and experiment with creating different rhythms by changing the
delay time of the del object.

Summary

A single bang can be delayed for a specific amount of time by the delay object, also called
del. If a second bang is received while the first bang is being delayed, the first bang is
forgotten and the second bang is delayed.

Numbers or lists can be delayed by the pipe object. A pipe can delay a series of numbers,
and output them later in the same rhythm in which they were received.

A pipe can also delay a list of numbers (or numbers received together, such as pitch-
velocity pairs) when arguments are typed in to indicate how many numbers are to be
delayed.

The delay time is specified in milliseconds, by a number received in the right inlet (or
typed in as an argument).

Delays can be used to create echo effects or rhythms.

Each time the random object receives a bang in its left inlet, it generates a random number
between 0 and one less than its argument and sends the number out its outlet.

Tutorial 22 Delay Lines

100

See Also

delay Delay a bang before passing it on
pipe Delay numbers or lists
random Output a random number

101

Tutorial 23: Test 4—Imitating a Performance

Creating Imitation

In previous chapters you have seen how to transpose notes played on your MIDI
keyboard, and how to delay notes. Try making a patch of your own that imitates what you
play, starting on a different note.

1. Make a patch that imitates whatever you play, 3 seconds after you play it, transposed
up a perfect fifth, and also imitates whatever you play 6 seconds later, transposed up
an octave.

Hints

The notes you play on your keyboard will have to be sent to two different places. In one,
the pitch will be transposed up by 7 semitones and all the note data will be delayed by
3000 milliseconds. In the other, the pitch will be transposed up by 12 semitones and the
note data will all be delayed by 6000 milliseconds.

Each imitation should use one pipe object to delay velocity and pitch data together.

• Page once to the right in the Patcher window to see the solution to the problem,
labeled Patch†1. Note that the order of the + object and the pipe object could be
reversed; the transposition could take place after the delay.

Let the User Type In a New Delay Time

If that exercise was too easy for you, try this more difficult one.

2. In Patch 1 each imitation of the melody comes 3 seconds later than the previous one.
Make a version of Patch 1 which lets the user type in a new delay time between
imitations.

This presents two potential problems:

• What happens if the user types in a ridiculous delay time such as -1000 or 3600000?

• What happens if the user types in a much shorter delay time while holding down a
note, and the note-off gets delayed less than the note-on and is played before the note-
on?

Tutorial 23 Test 4—Imitating a Performance

102

These problems represent the sort of extreme or unlikely cases you must take into
consideration to protect against your program malfunctioning or producing unwanted
results.

Dealing With Potential Problems

The problem of negative delay times is not serious because the pipe object will set any
negative delay time it receives to 0. The problem of extremely large delay times, on the
other hand, can be more serious.

If the delay time is very long and you are playing a lot of notes, the number of notes being
stored could cause pipe to run out of memory. This would cause some notes to be lost,
and could conceivably even cause the computer to crash.

The way to deal with this problem is to limit the numbers the user types in as a delay
time, and only send them to pipe if they are reasonable. Try using a split object or hslider to
limit the numbers between 0 and 15000.

The problem of note-offs being played before note-ons could occur if the user types in a
much smaller delay time while holding down a note on the synth. It would result in stuck
notes on the synth.

One solution is to compare each new delay time to the previous one. If the new one is
smaller, send a note-off to pipe for any pitch being held down on the synth. This requires
running the notes through a flush object before sending them to the pipe objects, and also
requires comparing the delay times and sending a bang to the flush objects if a smaller
delay time is typed in.

Solution to Exercise 2

• Scroll the Patcher window all the way to the right to see Patch No. 2, a possible
solution to the exercise.

Note: We have set Patch 2 to receive notes only on MIDI channel 2 so that it will not play
while you are trying out Patch 1. To hear Patch 2, set your keyboard to transmit on MIDI
channel 2.

Tutorial 23 Test 4—Imitating a Performance

103

We have used a combination of key and numkey to get the numbers typed on the
computer’s keyboard. The typed numbers are sent to split, and any numbers less than 0 or
greater than 15000 will cause an error message to be printed in the Max window.

Invalid numbers cause an error message to be printed.

The typed delay time is first sent to the relational operator < to compare it with the
current delay. If it is less than the current delay, a bang is sent to the flush objects, causing
them to send out note-offs for any notes that may be held down on your MIDI keyboard.

The new delay time is then sent to the right inlet of <, to be stored as the current delay
time. It is also sent to the right inlet of the two pipe objects. Note that it is doubled before
being sent to the pipe on the right, so that the right pipe will delay twice as long as the left
pipe.

If the new delay time is less than the current one
flush any held notes before changing the delay time.

Tutorial 23 Test 4—Imitating a Performance

104

Summary

Delay and transposition can be combined to create imitation.

Always consider unlikely possibilities. For example, whenever you ask the user to supply a
value, check to make sure it is a valid value before using it. (You can print an error
message when an invalid number is received, or you can just change it to some valid
value.) Whenever you are processing note data, make sure that note-ons are always
followed by note-offs.

105

Tutorial 24: send and receive

Sending Messages Without Patch Cords

It’s possible to send any type of message without using a patch cord with the send and
receive objects. A message in the inlet of a send object comes out the outlet of any receive
object that has the same argument.

In this patch we have redone the imitating patch from the previous chapter using send
and receive objects (also called s and r).

• Play on your MIDI keyboard. The note data is sent to the receive objects (and r
objects) that have the same name (argument) as the send object.

The name argument of a send object is like a unique radio frequency, and any receive
object with the same name is “tuned in” to that frequency. Any type of message can be
sent with s and r: ints, floats, lists, symbols, etc.

Communication Between Patcher Windows

The s and r objects have one particular advantage over patch cords, in that they can
communicate even if the objects are not in the same Patcher window. This is a very
valuable feature, enabling different patches to communicate with each other. You must
take care when naming your send and receive objects, though, so you won’t send a message
to another Patcher window unintentionally.

value

The value object (also called v) stores any message received in its inlet. The message is sent
out when a bang is received. All value objects with the same argument share the same
storage location in the computer’s memory, so the number can be stored and recalled by

Tutorial 24 send and receive

106

any one of the objects. When a new message is stored in one value object, all others that
share the same name will also contain the new message.

A message stored in one location can be recalled in another location.

• Use one of the number box objects to store a number in the value object named share.
The number can be recalled from any of the value share objects by sending a bang to its
inlet.

All value objects with the same name share the same value, even if they are located in
different Patcher windows.

Summary

Any message received in the inlet of a send object comes out the outlet of all receive objects
with the same name (argument), even if they are in different Patcher windows. This is
valuable for communicating between Patchers.

A message stored in a value object is shared by all value objects with the same name, even
if they are in different Patcher windows. When a value object receives a bang in its inlet, it
sends the message out the outlet (even if the message was received in another value object
with the same name).

See Also

pv Share variables specific to a patch and its subpatches
receive Receive messages, without patch cords
send Send messages, without patch cords
value Share a stored message with other objects

107

Tutorial 25: Managing Messages

Using the message box

So far we have used the message box to send a single message, triggering it either with a
mouse click or with a bang, a number, or a list in its inlet. The message box has many
additional features for constructing and changing messages, some of which are displayed
in this patch.

comma

If a message box contains a comma, messages are sent out one after another. In this way,
messages can be sent in rapid succession in response to a single trigger.

• Click on the two message boxes (marked A) in the bottom-left portion of the Patcher
window. One message box contains a list of three numbers, 40 59 80. When makenote
receives the list, it interprets the third number as a duration, the second number as a
note-on velocity, and the first number as a pitch. The other message box contains
three separate messages. It sends 40, then 59, then 80, and each number is interpreted
as a pitch by makenote. You can see the messages printed in the Max window, and you
can hear the difference in result.

This is one way to play a chord.

The Changeable Argument: $

The dollar sign ($) is a special character in a message box. It is a changeable argument, an
argument that is replaced by an item from the incoming message. For example, if a
message box contains The pitch is $1 and the velocity is $2, and receives the message 60 64 in its

Tutorial 25 Managing Messages

108

inlet, it will send out The pitch is 60 and the velocity is 64. The numbers 60 and 64 are stored in
place of $1 and $2 until they are replaced by other values received in the inlet. The dollar
sign can be followed by numbers in the range 1-9.

• Drag on the number box (marked B) in the top-left corner of the Patcher window. After
being limited by speedlim, each of the numbers triggers the message box. Because the
message box contains the changeable argument $1, the $1 is replaced by the incoming
number before the message is sent out.

The incoming number is stored in the changeable
argument $1 before the message is sent out.

The number is then sent to pipe, and 1000ms later it is sent to makenote and on to the
synth.

• The last number to trigger the message box is still stored in place of the $1 argument.
Now if you trigger the message box with a bang, the stored number will be sent out
again.

The set Message

We have already seen that the message set, followed by a number, can specify or replace
what is stored in many objects without triggering any output. The word set, followed by
any message can replace the contents of a message box without triggering output. The
word set by itself clears the message. (When an empty message is triggered, nothing is sent
out.)

Tutorial 25 Managing Messages

109

• Click on the different set messages in the portion of the patch marked C.

• Although the text in the message box changes, nothing is sent out until it is triggered
with the bang message.

append and prepend

The append and prepend objects are for constructing complex messages. The append object
appends its arguments (preceded by a space) at the end of whatever message it receives,
and sends the combined message out its outlet. The prepend object places its arguments
(followed by a space) before the message it receives, and sends the combined message out
its outlet. An example of these objects is in the bottom-right part of the Patcher window.

When the append object receives a message—for example, the number 12— it places the
word semitones after it and sends out 12 semitones. The prepend object then puts set Transposition
= before it and sends out set Transposition = 12 semitones, which changes the contents of the
message box to Transposition = 12 semitones.

Tutorial 25 Managing Messages

110

The same result could be obtained using only message boxes, in the following manner:

backslash

The backslash (\) is a special character for negating other special characters. A special
character that is preceded by a backslash loses its special characteristics and is treated like
any other character. This is necessary if you want to include a character such as a comma
or a dollar sign in a message without its being interpreted to have a special meaning.

The append Message

When append, followed by any message, is sent to a message box, the message following
append will be added to the contents of the message box.

• In the part of the patch marked D, click on the messages set \$1 and append 3000 to
construct the message $1 3000. (Notice that we had to precede the dollar sign with a
backslash. Otherwise, the message box would have tried to interpret $1 as a changeable
argument, and the message would have been set 0). Then drag on the number box
marked B.

Tutorial 25 Managing Messages

111

The $1 argument is replaced by the incoming number and is sent out as a list with the
number 3000. The list is received by pipe, 3000 is stored as the new delay time, and the
numbers are delayed for 3 seconds before being sent on.

• Next, click on all three message boxes in part D, to construct the message $1 3000, $1 200.

• Now when you send numbers to the message box, it sends out two lists, resulting in
each number being delayed both 3000ms and 200ms.

semicolon

When a semicolon (;) appears in a message box, the first word after the semicolon is
interpreted as the name of a receive object. The rest of the message (or up to the next
semicolon) is sent to all receive objects with that name, instead of out the message box’s
own outlet.

Tutorial 25 Managing Messages

112

• Click on the message box marked E, containing the number 700.

The number 700 is sent out the outlet to the right inlet of pipe, the number 0 is sent out the
outlet of the r transp object, and the message delay = 700 is printed in the Max window. This
is a way of sending many different messages to different places with a single trigger.

Summary

In addition to simply being able to send any message out its outlet, the message box can be
used to construct messages, and to send them to different places.

The comma is used to separate different messages within a message box, and send them
out one after the other. When a message is preceded by a semicolon in a message box, the
first word after the semicolon is the name of a receive object, and the rest of the message
(or up to the next semicolon) is sent to all receive objects with that name, instead of out
the message box’s outlet. The comma and the semicolon enable a message box to send
many different messages with a single trigger.

The dollar sign, followed immediately by a number (such as $1) is a changeable argument.
When the message box receives a triggering message in its inlet, each changeable
argument is replaced by the corresponding item from the triggering message. ($1 is
replaced by the first item, $2 is replaced by the second item, etc.) If no item is present in
the incoming message to replace the value of a changeable argument, the previously
stored value is used. If no value has yet been stored in a changeable argument, its value is
0 by default.

Tutorial 25 Managing Messages

113

A backslash, used before a special character such as a comma, a semicolon, or a dollar
sign, negates the special characteristics of that character.

A set message can be used to change the contents of a message box without triggering any
output. An append message can be used to add things to the end of the message in a
message box.

The prepend and append objects attach their typed-in arguments to the beginning or end of
incoming messages, then send out the combined message.

See Also

append Append arguments at the end of a message
message Send any message
prepend Put one message at the beginning of another
receive Receive messages, without patch cords
send Send messages, without patch cords
Arguments $ and #, changeable arguments to objects
Punctuation Special characters in objects and messages

114

Tutorial 26: The patcher Object

Subpatches

A Patcher program can contain other Patcher programs as subpatches. The patcher object
lets you create a patch within a patch.

A new Patcher window opens when you type patcher into an object box. You can edit a
patch in the newly opened subpatch window, then when you save your main patch, the
subpatch is saved as part of the same document. If the subpatch window is open when the
document is saved, it will be automatically reopened the next time you open the
document. The subpatch window can be brought to the foreground at any time by
double-clicking on the patcher object. You can even nest patcher objects; that is, put patcher
objects within patcher objects, within patcher objects, etc.

A patcher object can be given an argument specifying the name to be shown at the top of
the subpatch window. If there is no argument, the window is named sub patch. The name
is enclosed in brackets to show that it’s part of another patch.

This patch contains two patcher objects, named modwheel and keyboard, and their
contents are shown in the subpatch windows. For aesthetic reasons we have hidden most
of the objects in the subpatches with Hide On Lock, but we will examine them shortly.

• Play a few notes on your MIDI keyboard and move the modulation wheel. You will
see the dial and kslider display your actions in the two subpatch windows.

All Windows Active

In computer applications, the front window is the active window, where you apply menu
commands such as Save and Close, and click and drag on objects. To make a background
window active you have to click on it first to bring it to the foreground.

The All Windows Active option lets you use background windows without bringing
them to the front. To bring any window to the front, click on its title bar or choose its
name from the Windows menu. You can also Command-click on any visible part of the
window in Macintosh, or Control- click on Windows.

• Check All Windows Active in the Options menu. This will let you click and drag on
the dial and kslider in the background windows without bringing the windows to the
foreground.

Tutorial 26 The patcher Object

115

• Drag on the dial and the kslider. They can send data to the synth as well as display data
received from your keyboard.

You can close a subpatch window by clicking in its close box, and you can reopen it by
double- clicking on the (locked) patcher object. Now let’s examine the contents of the
patcher objects.

The modwheel Subpatch

• Bring the modwheel window to the foreground and unlock it.

Now you can see the hidden objects. Modulation wheel data received from your MIDI
keyboard with ctlin is sent to the r modIn object in the subpatch. The control data replaces
the $1 argument and sets the dial without triggering any output (so the data won’t be
echoed back to the synth). When you change the dial, the data is transmitted to the synth
with ctlout.

Because they can communicate from one Patcher window to another, send and receive
objects allow you to send messages back and forth between a patch and an embedded
subpatch.

inlet and outlet Objects

• Now bring the keyboard window to the foreground and unlock it to see the hidden
objects. At the top of the subpatch you see two inlet objects.

Tutorial 26 The patcher Object

116

When you include an inlet or outlet object in a subpatch, a corresponding inlet or outlet is
created in the patcher object in the main Patcher window. This is usually the most efficient
way to send messages to and from a subpatch.

Assistance

When Assistance is checked in the Options menu, Max gives you information about the
inlets and outlets of objects while you are editing a patch. Every time you place the mouse
on an inlet or an outlet, a brief description of that inlet or outlet is printed in the bottom
bar of the Patcher window.

You can give Assistance descriptions to the inlets and outlets of your patcher object. To do
so, select the inlet or outlet object in your subpatch and choose Get Info… from the
Object menu. You can type in a description which will show up as an Assistance message
when you are working in the main Patcher window.

• Unlock the main Patcher window and pass the mouse over the inlets of the patcher
keyboard object to see the Assistance messages.

Although writing Assistance messages to yourself may seem like a waste of time, it can be
very helpful in reminding you later what type of message a subpatch object expects to
receive in its inlet and what type of message will come out of its outlet.

Summary

The patcher object creates a subpatch within a patch. The subpatch is saved as part of the
document that contains the patcher object. If the subpatch window is open when the patch

Tutorial 26 The patcher Object

117

is saved, it will be opened automatically when the document is reopened. You can even
nest a patcher object within another patcher object.

Messages can be sent between the main patch and the subpatch with send and receive
objects, or with inlet and outlet objects. When inlet or outlet objects are placed in a
subpatch, corresponding inlets or outlets are automatically created in the patcher object.

When Assistance is checked in the Options menu, Max prints a description of inlets and
outlets in the bottom bar of the Patcher window while you are editing a patch. You can
assign Assistance messages to the inlets and outlets of a patcher object by selecting the inlet
or outlet object in the subpatch and choosing Get Info… from the Object menu.

When All Windows Active is checked in the Options menu, you can click and drag on
objects in a background window without first bringing the window to the front.

See Also

inlet Receive messages from outside a patcher
outlet Send messages out of a patcher
patcher Create a subpatch within a patch
Menus (Fundamentals) Explanation of commands

118

Tutorial 27: Your Object

Use Your Patch as an Object

As you get involved with writing your own patches, you will probably find that you are
using certain configurations of objects very frequently, or that there are certain
computational tasks that you need to do very often. It would be nice if you could just
make an object to do that task, then plug in the object wherever necessary.

Actually, any patch you have created and saved can be used as an object in another patch,
just by typing the filename of your patch into an object box as if it were an object name.
Many Max users refer to patches used in this way as abstractions.

As we saw with the patcher object, when you use a patch within a patch you usually want
to be able to communicate with the subpatch. Therefore, when you are making a patch
that you plan to use as an object inside another patch, you will usually want to include
inlet and outlet objects (or send and receive objects) so that you can send messages to your
object and it can send messages out.

The notetransposer Object

In this patch you see a notetransposer object, for transposing incoming pitches and sending
out the transposed pitch. The interval of transposition (the number of semitones up or
down) is supplied in the right inlet.

The notetransposer is not a built-in Max object. It’s a patch that we created and stored in a
file named notetransposer.

• Double-click on the notetransposer object to see its contents.

In previous patches we have simply sent the pitch to a + or - object to transpose a note.
Why do we need a subpatch like this just to transpose notes? The advantage of the

Tutorial 27 Your Object

119

notetransposer over a simple + operator is that the notetransposer ensures that note-offs are
transposed by the same interval as their corresponding note-ons, even if the interval of
transposition changes while the note is being held down.

If a note-off message is transposed by a different interval than its note-on was transposed,
the note-on will never get turned off and the note will be stuck on the synth. The
notetransposer solves this problem by keeping a list of the note-ons and their
transpositions in an object called funbuff, then looking up the transposition when the
note-off is played.

funbuff

An array is an indexed list of numbers. Each number in the list has a unique index
number or address. We’ll call the address x, and the value stored at that address y. The
funbuff object stores an array of numbers as x,y pairs.

When a number is received in the right inlet followed by a number in the left inlet, the
number in the right inlet (y) is stored at the address specified in the left inlet (x). Then,
when an address number is received by itself in the left inlet (x), funbuff sends the
corresponding y value out its left outlet.

The numbers can also be stored in funbuff as a list: an x address and a y value. For more
information, look under funbuff in the Max Reference Manual.

Tutorial 27 Your Object

120

Storing and Recalling Transpositions

The gate object in notetransposer is used to pass only the pitch of note-on messages. Before
the pitch reaches the right inlet of gate, the velocity value goes to the control inlet of gate
and either opens it or closes it. If the velocity is 0 (note-off) the gate will be closed and the
pitch will not get through.

The note-on pitch goes first to the + object to be transposed, then to the right inlet of
funbuff. The untransposed pitch then goes to the left inlet of funbuff, so the transposed
pitch is stored as the y value, with the untransposed pitch as the address (x).

As soon as the x,y pair is stored, the untransposed pitch (x) is sent by itself, causing the
transposed pitch (y) to be sent out.

When the note-off message comes later, nothing goes through the gate, and the
untransposed pitch is sent by itself to funbuff, causing the transposed pitch to be sent out
again. Since the note- off messages get their transposition from funbuff rather than from
the + object, the value in the + object can change without affecting the note-off
transpositions.

• Close the subpatch window. Play on your MIDI keyboard and drag on the slider at
the same time to change the transposition of what you are playing.

Storing transpositions in this manner is essential whenever the interval of transposition is
to be changed while the notes are being transposed. For example, the transposition might
be changed automatically by numbers generated in some other part of the patch.

Tutorial 27 Your Object

121

Differences Between the Patcher Object and Your Object

What are the differences between a subpatch in a patcher object and a subpatch you
created earlier and saved in a separate file?

One difference is in the way they are saved. The subpatch in a patcher object is saved as
part of the file that contains the patcher object. As a result of this, you can edit a patcher
object subpatch just by double clicking on the patcher object and unlocking the subpatch
window. When the subpatch is saved as a separate file, however, you can see its contents
by double-clicking on the object, but you can’t edit the contents of the subpatch window.
(Max will not let you unlock it.) To edit the object, you have to open the separate file in
which it was created.

The separate file containing your object must be in a folder where the patch that uses it
can find it. Max looks for files in the following places:

• The same folder as the patch that is using the subpatch,

• The same folder as the Max application

• Any other folder you have specified in the File Preferences dialog, under Look for files
in:. For more information about File Preferences…, see the Menus chapter of the
Fundamentals manual.

The other main difference is that if you save your patch while the subpatch window of the
patcher object is open, it will be opened automatically each time you open the main patch.
This is not true of a subpatch that is saved as a separate file.

Beware of Recursion

A patch that is used as an object in another patch can itself contain subpatches. For
example, our notetransposer object could have been written to contain a subpatch object
called splitnote which separated note-on messages from note-off messages.

A subpatch object may not contain itself, however, since this would put Max into an
endless loop of trying to load a patch within itself ad infinitum. For example, our
notetransposer object could not itself contain a notetransposer object, or any subpatch that
contains a notetransposer object.

Tutorial 27 Your Object

122

Documenting Your Object

You can see that the notetransposer object has been copiously commented, and all of its
inlets and outlets have been given Assistance messages. Such thorough documentation
makes it more likely that others will understand your patch and be able to use it, and also
helps to remind you how your patch works. Note: If your comments are extensive and
you want to include carriage returns in your comment text, use the Inspector to set two-
byte compatibility mode for the comment box.

Summary

Any patch you create and save can be used as an object in another patch. When you are
making a patch that will be used as a subpatch in another patch, you will usually want to
include inlet and outlet objects (or send and receive objects) so that you can send messages
to your object and it can send messages out.

The funbuff object stores an array of numbers: x,y pairs of addresses and values. When an
address number (x) is received in the left inlet, the value stored at that address (y) is sent
out the left outlet. This type of array is useful as a lookup table, for storing values in an
indexed list and looking them up later. One use of arrays is to pair note-on pitches with
their transposition so that the transposition can be looked up again when the
corresponding note-off is played.

The window of a subpatch object that is saved as a separate file is not opened
automatically when the Patcher window that contains it is opened (unlike the patcher
object). A patch that was saved as a file and used as a subpatch object can be edited only
by opening the file in which it is saved.

Explanatory notes in the form of comment boxes and Assistance messages are helpful to
you and to others who may use your patch.

See Also

funbuff Store x,y pairs of numbers together
Encapsulation (Max Topics) How much should a patch do?

123

Tutorial 28: Your Argument

Supplying Initial Values to Your Abstraction

Many Max objects take arguments, typed in after the object name, to supply some
information to the object such as a starting value. You can design your own object to get
information from typed- in arguments, too.

The gamble Object

In the Patcher window you can see several instances of an object called gamble. It’s not a
Max object; it’s a patch we created and saved in a document named gamble.

• Double-click on the gamble 64 128 object in the right part of the Patcher window to see
the contents of the subpatch.

The gamble object functions as an electronic gaming table. When it receives a bang in its
left inlet (or anything else, since the button inside gamble converts all incoming messages
to bang), it chooses a random number (limited by the 2nd argument or the number
received in the right inlet). If the random number is less than a certain other number
(specified by the 1st argument or received in the middle inlet), gamble sends out 1.
Otherwise gamble sends out 0.

In effect, the arguments to gamble state the odds of a 1 being output each time a bang is
received in the left inlet. In this case the odds are 64 in 128 (even up).

Tutorial 28 Your Argument

124

• Close the subpatch window, and double-click on the gamble 2 5 object to see the
contents of the subpatch. The odds are different in this subpatch, because the
arguments are different.

The # argument

• Now open the document named gamble in the Max Tutorial folder. You can see that
in the original gamble patch, the odds are specified with changeable arguments.

When the gamble patch is used as a subpatch in other patches, the changeable #1 and #2
arguments are replaced by the 1st and 2nd arguments typed into the gamble object. If no
argument is typed in, the # arguments are replaced by 0.

The # argument can be used with most Max objects inside your object, and can be
replaced by a symbol as well as a number. For examples of its usage, look in the
Arguments section of this manual.

Using Weighted Randomness

Now that you have seen how arguments are used to set initial values for a subpatch
object, let’s see how gamble is actually used in this patch. Each time gamble receives a bang
in its left inlet, it makes a probabilistic decision whether to send out 1 or 0, depending on
the specified odds.

Tutorial 28 Your Argument

125

In the right portion of the Patcher window gamble is used to decide whether to open or
shut a gate.

The velocity of each played note sets the odds of the gate being opened, then gamble is
triggered to open or shut the gate based on those odds. If the gate is open, the pitch will
get through and will be transposed down a semitone and transmitted back to the synth.

Let’s say you play a note with a velocity of 93. The odds of the gate being open are 93 in
128, a little less than 3 in 4, so it is likely that the note you play will be transposed. If you
play a note with velocity of 3, however, the odds are only 3 in 128 of the gate being open,
so the note will probably not be transposed.

The result is a probabilistic “Thelonius Monk effect” of adding lower grace notes to more
and more pitches as the velocity increases. Notice that we don’t need to use the
notetransposer object shown in the previous chapter, because we are transposing only
note-on pitches and makenote provides the note-offs.

• Play with different extreme velocities on your MIDI keyboard and notice the
difference in likelihood of a grace note being added to what you play.

Tutorial 28 Your Argument

126

In the left side of the Patcher window gamble is again used to make weighted random
decisions, with two slightly different implementations. When the metro 1000 object is
turned on, it triggers gamble every second, and gamble turns the metro 60 object on or off
(it will be turned on approximately 40% of the time).

Every 60ms the lower gamble will send out either a 1 or a 0, with the odds depending again
on the velocity of the played note. When it is 1, sel triggers random to choose a random
ornamentation interval which is added to the played note and transmitted to the synth.

A little bit of additional calculation is performed to make the range of the ornamentation
interval also depend on the played velocity. When the velocity is at a maximum, the range
of the ornamentation will vary from -7 to 7 semitones (up or down as much as a perfect
fifth). When the velocity is at a minimum, the ornamentation will only be 0 (unison).

For example, when the velocity is 127, a random number is chosen between 0 and
((127+8)÷9)- 1, that is, 14. That number will then have ((127+8)÷9)÷2) subtracted from
it, i.e. 7, setting the range of possible ornamentations from -7 to 7.

• Turn the metro 1000 object on, and play on your MIDI keyboard with extreme changes
of pitch and velocity. Notice that the ornamentation is wider and more dense when

Tutorial 28 Your Argument

127

you play harder. The effects of the ornamenter are most comprehensible when you
play very sparsely on the keyboard.

When to Use Arguments

The reason for supplying values to an object is to modify some characteristic of the
subpatch. If you always want the subpatch to do exactly the same thing, you probably
don’t need to change the values inside it in any way. If, however, you want your object to
do something slightly differently depending on some value it receives, the value will have
to be supplied using an inlet or a typed-in argument.

There’s no hard and fast rule about when to supply values to a subpatch by using
arguments, and when to supply values via inlets. Generally speaking, if you will just want
to supply the value once it can be most easily given as an argument, but if you want to
change the value of a single object often you will need to use an inlet.

One solution is to make both ways possible, as we have done with gamble. The arguments
are used to set initial values inside the subpatch, but the values can be changed by
numbers received in the middle and right outlets.

Summary

You can enable your object to accept information from typed-in arguments by including
changeable # arguments in the subpatch. A changeable argument of #1 in the subpatch is
replaced by the first typed-in argument in the object box, #2 is replaced by the second
argument, and so on. If no argument is typed into the object box, the changeable
argument is set to 0.

Your patch can make weighted random (probabilistic) decisions by choosing a random
number, then testing to see if the number meets certain conditions.

See Also

Arguments $ and #, changeable arguments to objects

128

Tutorial 29: Test 5—Probability Abstraction

Create Your Own Abstraction

This is an exercise in the creation and use of your own abstraction—one object that passes
on a certain percentage of the bang messages it receives, then use that object in a patch.
First we must create the object.

1. Create an object called passpct that receives bang messages in its left inlet and passes a
certain percentage of them out its outlet. The percentage should be specified by a
typed-in argument or by a number received in the right inlet.

Hints

A percentage of probability is the number of times an event is likely to occur in 100 tries.
For example, a 33% chance means the odds are 33 in 100 that the event will occur.

Use the gamble object from the previous chapter as a model to give you an idea how to
proceed. The passpct object will be similar except:

a) The number of possible random choices will always be 100.

b) Instead of sending out a 1 or a 0, you want your object to send out bang (whenever the
condition is met).

Solution to Exercise 1

We have saved our solution to Exercise 1 in a file called PassPct in the Max Tutorial
folder.

Tutorial 29 Test 5—Probability Abstraction

129

When a bang or any other message is received in the left inlet, the random 100 object
chooses a number from 0 to 99. If it is less than the number specified as an argument (or
received in the right inlet), sel sends a bang out the outlet.

Next we will use the PassPct object in a patch to make probabilistic decisions.

Pass a Percentage of bang messages from a metro

2. Use a metro to send bang messages at a constant speed and use PassPct to pass only a
certain percentage of those bang messages. Use the bang messages passed by PassPct to
trigger notes sent to the synth. Use a 5-octave kslider to choose which pitch will be
transmitted.

Make the percentage value of PassPct depend directly on the pitch selected with kslider.
As the pitch increases from 36 to 95, the percentage should increase from 5 to 95.

Hints

The pitch value sent out by kslider should be stored in some type of storage object (an int,
a value, a number box, etc.—an int is the most efficient). The bang messages from PassPct can
then trigger the storage object to send its number to makenote and play a note.

Tutorial 29 Test 5—Probability Abstraction

130

The hard part of this exercise is using the range of pitches sent out by kslider (from 36 to
95) to provide a different range of percentages (from 5 to 95) to PassPct. This is known as
mapping one range to another. A direct correspondence such as this is a linear map: the
relationship between the two ranges can be graphed as a straight line.

As the pitch changes from 36 to 95, the percentage changes from 5 to 95

Calculating a Linear Map

The problem of linear mapping is: given one range of numbers from xmin to xmax and
another range of numbers from ymin to ymax, and given some number x within the first
range, find the number y that occupies the same position in the second range.

Here’s a formula for finding the y value that corresponds to any given x value.
y = ((x - xmin) * (ymax - ymin) ÷ (xmax - xmin)) + ymin

When we plug our ranges into the formula, we get
y = ((x -36) * 90 ÷ 60) + 5

Tutorial 29 Test 5—Probability Abstraction

131

How do we translate this into objects?

The pitch from kslider is sent into the formula, and the percentage is sent to PassPct. Your
patch might look something like this.

Use PassPct to make Random Choices

Let’s add one more element to the exercise.

3. Add another PassPct object that receives bang messages from the same metro, but
triggers random octave transpositions of the selected pitch. Make the percentage of
this PassPct object decrease from 95 to 5 as the selected pitch increases.

This part of the exercise presents two new problems: how to create random octave
transpositions of a pitch, and how to express an inverse linear relationship. Try to find a
solution to these problems yourself before reading further.

Random Octave Transpositions of the Pitch

To make a random octave transposition of a note, you need to calculate the pitch class of
the note (C, C#, D, etc.), then add 12 to that pitch class some random number of times.

Tutorial 29 Test 5—Probability Abstraction

132

You will want to limit the random numbers so that they keep the transpositions within
the range of the keyboard. The solution might look something like this:

Calculating an Inverse Linear Map

You may remember from an earlier patch in which we inverted pitches that we subtracted
the maximum possible pitch from whatever pitch was played, then took the absolute
value of the result. (See Patch 2 in Tutorial 14.)

The formula for an inverse linear map, then, looks like this:
y = (-(x - xmax) * (ymax - ymin) ÷ (xmax - xmin)) + ymin

When we plug our ranges into the formula, we get
y = (-(x - 96) * 90 ÷ 60) + 5

We can translate this into Patcher objects as

Scroll to the right in the Patcher window to see Exercise 2 and Exercise 3 combined in a
single patch. (We’ve used our PassPct object).

Tutorial 29 Test 5—Probability Abstraction

133

Summary

To create your own object, make a patch that includes inlet and outlet objects (and
changeable # arguments if appropriate), save the patch, then use your object by typing the
name of the file into an object box in some other patch.

The PassPct object is similar to the gamble object from the previous chapter. It passes or
suppresses the bang messages it receives, according to some percentage of probability.

You can transpose a note by an arbitrary number of octaves by first calculating its pitch
class (with a % 12 object), and then adding some multiple of 12 to the pitch class.

You can create a direct or inverse linear relationship between two ranges of numbers
using the linear mapping procedure described in this chapter.

134

Tutorial 30: Number Groups

Use of Lists

We have seen that a message can consist of a single number or a list of numbers separated
by spaces. The list is an effective way of sending numbers together, ensuring that they are
received at the same time by an object.

For example, we usually want to keep pitch values and velocity values synchronized so
that they are received in the proper order by noteout. When noteout receives a list in its left
inlet, it interprets the third element (if present) as the channel number, the second
element as the velocity, and the first element as the pitch.

There are objects specifically for combining numbers into a list, and objects for breaking
lists up into individual numbers. So, you can choose the most appropriate way to send
groups of numbers between objects. A list even can include symbols (words) as well as
numbers, which may be useful in some cases. As long as the first element is a number,
Max objects will recognize the message as a list.

iter

When the iter object receives a list of numbers in its inlet, it breaks the list up into its
individual elements and sends the numbers out in sequential order rather than all at the
same time. It’s as if iter puts commas between the elements, to make them into separate
messages.

In the right part of the Patcher window you can see iter at work. When the metro triggers
the list of numbers, it is sent to iter, which breaks up the list and sends each of the
numbers on in order, as rapidly as possible. The numbers are delayed by the pipe, then are
sent on as (virtually simultaneous) pitches to makenote.

Tutorial 30 Number Groups

135

unpack

When a list is received by unpack, each element of the list is sent out a different outlet. The
number of outlets unpack has is determined by the number of arguments you type in. (The
arguments also set an initial value for each outlet.) If there are no typed-in arguments,
unpack has two outlets, both with an initial value of 0.

If there are more items in the incoming list than unpack has outlets for, the extra items are
ignored. If a list is received that has fewer items than there are outlets, unpack sends those
items out the appropriate outlets but sends nothing out the remaining outlets.

In the example patch, when a list is received by unpack, the second item in the list is sent
out the right outlet, then the first item in the list is sent out the left outlet (output order is
always right to left).

pack

The pack object combines separate items into a list. It stores the message most recently
received in each of its inlets, then when it receives a message in the left inlet it sends out
all the stored items together as a list. The number of inlets—and the initial value stored in
each one—is specified by the typed-in arguments.

In the left part of the Patcher window, note-on pitch and velocity values from your MIDI
keyboard are packed in a list along with the number 750, and the list of pitch-velocity-
delay is sent to the pipe. Every note from the keyboard will be delayed 750ms, even if the

Tutorial 30 Number Groups

136

delay time of the pipe is changed by some other part of the patch, because the delay time is
sent in the same list as the note- on data.

swap

The swap object reverses the sequential order of numbers it receives. It is triggered by a
number in its left inlet, just like other objects, but it sends that number out its right outlet
first, then sends the number that was received earlier in the right inlet out its left outlet.

In the example patch, swap reverses the order of the first two list items, received from
unpack, and uses the first number in the list, 40, as a velocity and the second number, 59, as
a pitch.

It would not be sufficient just to cross the patch cords from unpack, because the number 59
would arrive at the left inlet of pipe and trigger it before the number 40 got there.

This patch is not equivalent to the one shown above.

When swap receives a bang in its left inlet it sends out the same numbers again. The two
numbers to be swapped can also be received in the left inlet as a list. In fact, the unpack
object in this patch is not strictly necessary, because swap would understand the list and
swap the first two items, but we included unpack to make the number-swapping more
evident visually. There is also an object for swapping floats, called fswap, not
demonstrated here.

Tutorial 30 Number Groups

137

Lists Can Be Managed with Message Boxes

As was shown in Tutorial 25, a message box can also be used to isolate and rearrange
items in a list. Here are a couple of examples showing possible uses of message boxes for
selecting individual items from a list.

An Automatic Accompanist

Now that we have seen how the list management objects work, let’s see how they are used
in the example patch. Elements of the list 40 59 80 are rearranged and delayed in different
ways to send different messages to makenote at different times.

When the metro is turned on, the entire list is sent to makenote immediately, playing the
note 40 (E1) with a velocity of 59 and a duration of 80ms. The pitch and velocity are
reversed by swap, and delayed 500ms before being sent to makenote, playing the note 59
(B2) with a velocity of 40. One second after the metro was turned on, the numbers are all
sent to makenote as a chord—E1, B2, and G#4—with the velocity of 40 from the previous
note. At the same time, the bang that was delayed by the del object retriggers the note B2
from swap, and it is delayed another 500ms before being played. After a total of 2 seconds,
the entire process is repeated. The result sounds like this:

Automatic E-major accompaniment figure

Note-on pitches and velocities from your MIDI keyboard are packed into a list along with
a delay time and sent to pipe with a delay of 750ms. This causes a short-note echo of every
played note 750ms later.

Tutorial 30 Number Groups

138

The played notes also have an effect on the accompaniment. If a played note arrives at
pipe in between the first and second notes of the accompaniment figure, the delay of the
second note of the accompaniment will be 750ms, causing this rhythmic change:

Also, if a delayed played note reaches makenote between the second and third notes of the
accompaniment, the velocity of the chord will be altered.

• Turn on the accompaniment and play a melody along with it.

Summary

A list is any message that begins with a number and contains additional items as
arguments. Usually the arguments are all numbers, but they may also be symbols.

Sending numbers together as a list ensures that they will be received together. Many
objects, such as pipe, makenote, and noteout, interpret a list of numbers received in the left
inlet as if the numbers had been received separately in different inlets.

The pack object combines the messages it receives in each inlet into a single list. The
unpack object breaks a list up into its individual items, and sends each item out a different
outlet, in order from right to left. The iter object sends each number of a list individually,
in order from left to right, out a single outlet.

The changeable $ argument in a message box can be used to isolate individual elements of
a list. This is especially effective if the list contains symbols in addition to numbers.

The swap object reverses the sequential order of two numbers. When a number is received
in the left inlet, it is sent out the right outlet, then the number that was received earlier in
the right inlet is sent out the left outlet.

See Also

buddy Synchronize arriving numbers, output them together
fswap Reverse the sequential order of two decimal numbers

Tutorial 30 Number Groups

139

iter Break a list up into a series of numbers
pack Combine numbers and symbols into a list
swap Reverse the sequential order of two numbers
thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages

140

Tutorial 31: Using Timers

Timed Processes

So far we have used two different timing objects: metro for sending a bang at regular
intervals, and timer for reporting the elapsed time between two events. In this chapter we
introduce some objects for producing timed progressions of numbers.

clocker

The clocker object is the same as metro, except that instead of sending out bang at regular
intervals it sends out the time elapsed since it was turned on. With this information you
can cause values to change in some manner correlated with the passing of time.

In the part of the Patcher window marked A, a clocker reports the elapsed time, and that
information is mapped to send increasing values to the mod wheel of the synth. Over the
course of 6 seconds the time progresses from 0 to 6000, causing the control values to
increase from 0 to 127. When the value reaches 128, the clocker is turned off by sel. The
result is a 6-second linear fade-in of the modulation effect on the synth.

The int object is included to truncate the float output of the * object so that sel will make
an accurate comparison.

counter

The counter is not itself a timing object, but it is frequently used in conjunction with metro,
because counter counts the number of bang messages it has received. The metro-counter
combination is an effective way to increment or decrement a value repeatedly.

Tutorial 31 Using Timers

141

In the part of the Patcher window marked B, the first argument to counter specifies the
direction of the count: 0 for upward. (1 is for downward, and 2 is to go back and forth
between up and down.) The second argument sets the minimum value of the count, and
the third argument sets the maximum value.

Note: The meaning of the arguments to counter changes depending on how many
arguments there are. Look under counter in the Max Reference Manual for details.

The count is sent out the left outlet. When the maximum (127) is reached, counter sends a 1
out its right-middle outlet. This 1 is detected by sel, which toggles the metro off. This is
another way to get the same effect as we did using clocker. With counter, however, the
numbers can be easily placed in the desired range (0 to 127 in this case) without a
multiplication being performed each time. Multiplication takes longer for a computer to
perform than incrementing a count.

The metro is set to a speed of 47ms so that the progression from 0 to 127 will be completed
in 5.969 seconds—as close as possible to 6 seconds (using this method).

line

The line object also outputs numbers in a linear ramp from some starting value to some
ending value over a specific period of time. The first argument sets the starting value and
the second argument sets the grain—the time interval at which numbers will be sent out.
When a time period is received in its middle inlet and an ending value is received in its
left inlet, line outputs numbers in a linear progression from the starting value to the
ending value over the specified time period.

The numbers in the inlets can also be received together as a list in the left inlet. If a
number is received by itself in the left inlet, without a time period being received at the
same time, line jumps to (and outputs) the new value immediately.

Tutorial 31 Using Timers

142

A starting value can be sent to line without triggering any output by sending it a set
message (the word set, followed by a number).

Set starting value to 0, then progress to 127 in 6 seconds,
outputting a number every 47ms

Stack Overflow

Have you ever been in the position of feeling like the list of things you have to do is
growing faster than you can get them done? Well, it’s possible to overload Max in a
similar way, so that the list of things Max has to do eventually overflows the amount of
memory space available for its stack of things to do. This is known as a stack overflow, and
it causes Max to shut down its internal scheduler and stop performing timed operations
until you fix whatever is causing the overflow.

One way to cause a stack overflow is to feed an object’s output back into its input. For
example, when you want to increment numbers as fast as possible, you might be tempted
to feed the output of an object like counter right back into itself, repeatedly incrementing
the count. But such automatic repetitions must be separated by at least a millisecond or
two, otherwise Max will generate repetitions too fast for itself to keep track of, and you
will get a Stack Overflow error dialog. When this happens, you must choose Resume from
the Edit menu to restart Max’s scheduler.

Tutorial 31 Using Timers

143

• Patches D and E show two examples of situations that result in stack overflow. Click
on the buttons if you want to make Max very unhappy. (Go ahead, you won’t break
anything.) Remember to choose the Resume command to start Max up again.

tempo

The tempo object is another metronome, but it operates in somewhat more traditional
musical terms than the millisecond specifications necessary with clocker, metro, and line.
The first argument to tempo (or a number received in the left-middle inlet) sets a
metronomic tempo in terms of beats per minute—that is, quarter notes per minute—just
like a traditional metronome.

The second and third arguments (or numbers supplied in the right-middle and right
inlets) specify what fraction of a whole note tempo will use to send out ticks of the
metronome. For example, if the second and third arguments are 1 and 16, the fraction is
1/16 of a whole note and tempo sends out a number from 0 to 15 for every sixteenth note,
based on the specified quarter note tempo. A fraction of 2/3 would send out half note
triplet ticks (a tick every 2/3 of a whole note), and so on.

The numbers sent out by tempo always go from 0 to the number 1 less than the pulse
division (the third argument). The greatest allowable division is 96 (sixty-fourth note
triplets). The fact that tempo sends out a number (a sort of pulse index), lets you assign
different things to happen on different pulses in a measure. In this way you can generate
metrically-based automated processes.

Tutorial 31 Using Timers

144

In Patch F, tempo sends out a number for each sixteenth note at a tempo of 80, and
triggers a different pitch and velocity for each pulse of the measure. The pitch ascends in
an arpeggiated augmented triad, and the velocities are greater on the strong beats of the
4/4 measure, and smaller on the weaker pulses.

• Select a velocity-sensitive sound on your synth and turn on the tempo object.

External Timing

The metro, line, clocker, and tempo objects can be synchronized to some timing source
other than Max’s internal millisecond timer, such as a time-code generator, an external
sequencer, or even some other software sequencer. For details, look under those object
names, as well as the setclock object, in the Objects section of this manual.

Summary

When clocker is turned on it sends out the elapsed time at regular intervals. The time value
can be mapped to other ranges to make them depend on the passing of time.

The counter keeps track of how many bang messages it has received and sends out the
count. The count can be restricted to a specific range, and the bang messages can be
supplied repeatedly by a metro to increment and/or decrement the counter at a specific
speed. This is another way of creating a particular progression of numbers over time.

The line object is a third way of generating a linear progression of numbers. line outputs
numbers in a ramp from some starting value to some ending value, arriving at the new
value in a specific amount of time.

Tutorial 31 Using Timers

145

Incrementing numbers by means of recursive loops, without some type of delay between
repetitions, can result in a stack overflow error, which causes Max to stop its internal
scheduler. Choosing Resume from the Edit menu restarts the scheduler.

The tempo object is a metronome that lets you specify timing in traditional musical terms
of beats per minute and beat divisions. It sends out a different number for every pulse in a
measure, so each pulse number can trigger a different action.

The metro, line, clocker, and tempo objects can be synchronized to an external timing
source such as a sequencer or a time-code generator.

See Also

clocker Output the elapsed time, at regular intervals
counter Count the bang messages received, output the count
line Output numbers in a ramp from one value to another
metro Send a bang, at regular intervals
setclock Control the clock speed of timing objects remotely
tempo Output numbers at a metronomic tempo
timein Report time from external time code source

146

Tutorial 32: The table Object

An Indexed Array of Numbers

In Tutorial 27 we introduced the funbuff object for storing an indexed array of numbers.
Number values are stored with an index number (address), then when you want to recall
a value you just specify the address where it is stored. The table object stores and recalls
numbers similarly, but has many more features.

Graphic Editing

The most notable feature of the table object is that it allows you view and edit the stored
numbers in a graphic editing window.

• Check All Windows Active in the Options menu so that you can view table objects
and click in the Patcher window at the same time.

• Double-click on the table object at the bottom of Patch 1. A Table window will open
to show a graph of some numbers that we have stored there.

This table contains 128 numbers, with addresses from 0 to 127. Addresses always go from 0
to the number 1 less than the size of the table. This table shows a range of possible values
from 0 to 127, and the values we have stored range from 36 to 96.

Tutorial 32 The table object

147

• Turn on the metro at the top of Patch 1. The counter counts up and down between 0
and 127. The numbers are sent through a uslider just to show their progression
graphically, then they are sent to the left inlet of table.

A number by itself in the left inlet of table specifies an address, and the value stored at that
address is sent out the left outlet. The output of the table is displayed graphically by the
second uslider. You can see and hear the numbers in the table as counter steps through
them.

Get Info…

• With the Untitled table editing window still in the foreground, choose Get Info…
from the Object menu to open the table Inspector.

The table Inspector shows you the Size of the table (the number of storage addresses) and
the Range of displayed values. It also has two options for viewing the numbers. Checking
Signed causes the Table window to display negative values as well as positive, and
checking Note Name Legend shows the y axis values as MIDI note names instead of
numbers.

Tutorial 32 The table object

148

Saving the Values in a table

It’s important to understand the different options for saving a table, so you don’t lose
numbers you’ve carefully entered. Normally, the values you store in a table object are lost
when you close the Patcher window. If you check Save Table with Patcher, however, the
numbers in the table will be saved as part of your Patcher document. Then, when you
reopen the patch the table will still contain the numbers. We have checked Save Table
with Patcher for this table so that our masterpiece will be preserved.

If you change the values in a table, Max will ask you if you want to save the changes you
made to that table when you close the Patcher window. If you don’t want Max to ask you
that every time you close the Patcher window, check Don’t Save. Don’t Save does not
cause you to lose any values you have explicitly saved with Save with Patcher; it just
doesn’t remind you to save any subsequent changes.

Any time the table editing window is in the foreground you can save its contents to a
separate file by choosing Save from the Max menu. Then, whenever you want to use the
file in a patch, just create a table object and type in that file name as an argument. The
contents of the file will be loaded into the table object.

An example of a table that’s stored as a separate file can be seen in Patch 3. The file
Cmajor.t is loaded into the table object whenever the Patcher window is opened. You
might want to give your Table files names that include some distinguishing characteristic,
such as .t, so that you can tell Table files and Patcher files apart.

Tutorial 32 The table object

149

• Double-click on the table Cmajor.t object to see its contents. With the Cmajor.t table
editing window in the front, choose Get Info… from the Object menu to open the
table Inspector.

You can see that the Size of the table is 36 (the number of notes in C-major that are on a
61-note keyboard). Don’t Save is checked because we don’t anticipate wanting to save
changes to this file, and Save Table with Patcher option is not checked because it’s
sufficient to have the table stored in a separate file and read it in when we open the patch.

• Close the table Inspector and click on the button in Patch 3 to hear the use of line and
table for reading through a predetermined set of pitches. Notice that line is also used
to create a velocity crescendo from 20 to 125.

In order to go from 0 to 35 in exactly 3.5 seconds at a rate of exactly 10 notes per second,
we had to play a small trick on the line object by giving it a time slightly longer than
desired (3501ms). Here’s why. To produce a perfectly timed ramp of all values from one
number to another with line, you need to be aware of two details. The first detail is that
line sets out interpolating from its starting point immediately, without pausing and
without necessarily first outputting its starting point value.

Tutorial 32 The table object

150

So, specifying a 3.5 second line from 0 to 35 in one of the ways shown in the following
example will not give us quite the desired results.

A second detail worth knowing about line is that it actually travels to its destination in less
than the specified time. It will output numbers at the rate specified by its “grain of
resolution” (the rate specified by its second argument or by a number received in its right
inlet) as long as the total time elapsed is less than that specified in its middle inlet. So, in
the preceding example, it will actually arrive at its destination value of 35 in 3400ms. By
giving it a slightly longer time, we allow it to take 3500ms, in 36 steps (including the first,
immediate output), so the first step starts at 0.

Creating a New table

There are three easy ways to create a new Table file.

1. Choose Table from the New submenu of the File menu to open a new table editing
window. Draw in the values you want, then choose Save from the File menu to save
the table values.

2. Create a new table object, which will automatically open a new table editing window
for you. The new table can be saved as a separate file before closing the table editing
window, or you can check Save with Patcher so that it will be saved as part of your
patch.

3. Choose Text from the New submenu of the File menu to open a new Text window.
Type in the word table, followed by a list of numbers, then save the file.

Once you have saved a Table file you can use it in a Patcher window by creating a new
table object and typing in the text file name as an argument.

Tutorial 32 The table object

151

Drawing in a Table Window

You can draw numbers into in a table editing window with the Pencil tool, or use the
Straight Line tool which automatically draws a straight line between the points where you
click.

You can select a region of values with the Selection tool, cut or copy the values, then select
another region and paste the first region in its place. You can even copy numbers from a
Text window—or from any word processing application—then paste them into the
graphic table window in a region specified with the Selection tool.

• Double-click on the table object at the bottom of Patch 1 and draw a new melodic
curve, then listen to it by turning on the metro.

Other Ways to Alter a table

The table object can understand a number of messages in its left inlet. For a complete list,
look under table in the Max Reference Manual. Patch 2 shows a few of the different
messages, demonstrating ways to alter a table without opening its graphic editing
window.

To store values in a table, send the value in the right inlet, then send the address where
you want it stored into the left inlet. You can also send the address and the value to the
left inlet together as a list.

Tutorial 32 The table object

152

In Patch 2, we use an uzi object to send lists to table automatically, filling all its addresses
with the value 64.

• Double-click on the table object in Patch 2, then click on the button to see the value 64
being stored at all the addresses.

When the uzi object receives a bang or a number, it sends a specific number of bang
messages out its left outlet as fast as possible, all within a single tick of Max’s internal
clock. It also counts the bang messages as it goes and sends the count out its right outlet. It
is particularly useful for sending out a series of messages “at the same time”, such as a
series of addresses and values for initializing a table. Since uzi starts counting from 1, we
send the 0 separately, triggered by the same bang.

The word set, followed by an address and one or more values, stores the values starting at
the specified address. For example, the message set 23 65 68 79 stores the number 65 at
address 23, 68 at address 24, and 79 at address 25.

• Send address numbers from the number box to trigger the message containing set $1.
Watch the results in the table editing window.

• The word size, followed by a number, sets the size of the table (the number of
addresses). Trigger the message containing size $1 by sending it a number from the
number box. Notice the change in the table editing window.

Tutorial 32 The table object

153

You’ll also notice that we’ve included additional connections so that a new size setting
will cause corresponding changes in other objects, so they interact properly with the table.

Using a table for MIDI Values

In Patch 1 we used the values in a table to provide pitches to noteout. In Patch 2 we use a
line object to step through the table at different speeds, outputting different pitch bend
curves.

Each note-on velocity is multiplied by 40 (yielding potential values from 40 to 5080). This
value is used as the amount of time the line object will take to read through the table. The
louder a note is played, the more slowly line reads through the table, sending out pitch
bend values.

Notice how the message box is used to rearrange the incoming numbers and send out two
different messages. We are not as picky about the timing of the line object here as we were

Tutorial 32 The table object

154

in Patch 3 because the number of values sent out by line is quite unpredictable due to
possible variations in played velocity.

• Alter the values in the table in the ways discussed, or by drawing in a curve yourself.
Play a melody on your MIDI keyboard with long notes and a variety of velocities in
order to hear the different pitch bend speeds.

Summary

The table object stores and recalls an indexed array of numbers. You can graphically view
and edit the stored numbers by double-clicking on the table object.

The values in a table are normally discarded when the Patcher window is closed, but you
can save them as part of the patch by selecting the table, choosing Get Info… from the
Object menu, and checking Save with Patcher. You can also save a table as a separate file,
and can then use it in a patch by creating a table object and typing in the file name as an
argument.

To open a new Table window, choose Table from the New menu, or create a new table
object in a Patcher window. You can also just type the word table, followed by a list of
numbers, into a Text window and save it as a file.

To store values in a table object without opening its graphic editing window, send the
value in the right inlet then send the address where you want to store it into the left inlet.
Alternatively, you can send the address and value in the left inlet together as a list.

A set message changes certain values in the table, and a size message changes the number
of values the table can hold.

The uzi object sends out a specific number of bang messages as fast as possible, in a single
tick of Max’s internal clock. It also counts the bang messages and sends out the count, so it
can be used to send a whole series of messages in a single instant.

See Also

table Store and graphically edit an array of numbers
uzi Send a specific number of bang messages
Tables Using the table graphic editing window

155

Tutorial 33: Probability Tables

Making a Histogram

A histogram is a graph of frequency distribution, showing the relative occurrence of
different events. The histo object keeps track of all the numbers it receives, as well as how
many times it has received each number, in an internal histogram.

Each time histo receives a number from 0 to 127 in its left inlet, it adds that number to its
internal histogram, then sends the number of times it has received that number out the
right outlet, and the number itself out the left outlet. This output can be sent directly to a
table to keep a graphic representation of the histogram. The addresses in the table
correspond to the numbers received by histo, and the values in the table tell the frequency
of occurrence of each number.

The frequency distribution of different numbers—a comparison showing which numbers
occurred most frequently—is displayed in the graphic window of the table.

Probability Distribution

The bang message in the left inlet of a table has a special function. Instead of sending out a
stored value, the table sends out an address. The probability of a particular address being
sent out is in direct proportion to its stored value, as compared to the other values in the
table. If the value stored in an address is greater than in other addresses, that address is
more likely to be sent out when a bang is received. For a more detailed description of the
effect of bang on a table, look under Quantile in this manual.

This feature of the table makes it perfect for storing a probability distribution. Each
address can be assigned a different likelihood of being sent out when a bang is received. If
the values in the table have been supplied by histo, as described above, the likelihood of a
number being sent out of the table depends on how many times it was received by histo.

Tutorial 33 Probability Tables

156

With this combination you can base the probability of a number’s occurrence on the past
history of how many times it has already occurred. The more it has occurred in the past,
the more likely it is to occur in the future.

Keeping a History of What is Played

In our example patch, we have used histo and table to keep a frequency distribution of the
pitches and velocities of notes played on the synth. These table objects store histograms of
the pitches and velocities played.

The stripnote object is very important here because without it note-off messages would
cause each pitch to be counted twice, and the velocity 0 would be by far the most common
velocity.

• Open the table editing windows containing the histograms of pitches and velocities,
and play on the synth to see how the distributions are stored.

Rhythm Analysis

In the patch we use a simple method of rhythmic analysis to keep a histogram of the
rhythms played. We use a timer to get the time between note-ons, and divide the time by
30 to get the rhythm—the number of 30ms pulses that elapse between notes.

If the time between any two notes is less than 1 pulse (30ms), we assume the second note
is virtually simultaneous with the previous note and should therefore not be included in
our analysis. If the time between notes is greater than 96 pulses (2880ms), we assume that
the performer has stopped playing momentarily, or is holding an extremely long note. In
either case, we don’t want to include it in our histogram. So the split object passes only
rhythms that are between 1 and 96 pulses in length, and a histogram of these rhythms is
stored in the table.

Tutorial 33 Probability Tables

157

An Improviser with a Memory

When the metro in the bottom left corner of the Patcher window gets turned on, it sends
bang messages to PassPct (the patch we wrote in Tutorial 29), and 95% of the bang messages
get passed on to the three table objects. A velocity, a pitch, and a rhythm are sent out, with
the choice of each being based on the stored probability distributions (the histograms of
what has been played by the performer). The velocity and the pitch are sent immediately
to the synth. The rhythm is translated back into milliseconds by multiplying it by 30, then
it is sent to the metro to set a new speed (and to makenote to set a new duration for the
subsequent note).

The resulting “improvisation” bears some resemblance to what you played on your MIDI
keyboard, because it uses the same pitches, velocities, and rhythms, but the improviser
patch recombines these parameters randomly. Because of the PassPct object, the
improviser also rests about 5% of the time.

The User Interface

We had to decide how much control the performer should have over the improvising
patch, and how the control should be implemented. We decided that the improviser
would be turned on by moving the modulation wheel to any position other than 0, or by
clicking on a toggle object.

We also wanted the performer to be able to erase the improviser’s memory, either all
parameters or just one parameter, so that its memory can be filled with new information.
This requires sending clear messages to the histo and table objects, to set all their values to 0.

Tutorial 33 Probability Tables

158

We decided to have all mouse controls located in a separate window, and have automatic
on/off control from the mod wheel as well. We have hidden most of the objects and patch
cords in the [controls] subpatch window, so if you want to see how the main patch
communicates with the subpatch you’ll need to unlock the [controls] window.

The data from ctlin is sent to the toggle in the subpatch, then back to the main patch. This
lets us use the toggle both for displaying the on/off state received from the mod wheel and
for actually sending on/off commands with the mouse.

The on/off state (0 or non-zero) is sent to togedge. togedge sends a bang out one of its
outlets only when the number it receives represents a change from 0 to non-zero or vice
versa. The left outlet is for changes from 0 to non-zero and the right outlet is for changes
from non-zero to 0. If we sent the control data directly to the metro, the metro would get
restarted with every non-zero number from the mod wheel. togedge lets us detect only the
essential control data: changes to and from 0.

When togedge receives the on status from the toggle, it turns on the metro. When it
receives a 0, it turns off the metro and sends a bang to all the message boxes in the controls
window. Each of the clear messages is routed to the proper histo and table objects with
route. Clearing the rhythm also resets the time of metro and makenote to 720.

The reason we used three different message boxes to send the clear messages separately is
because it also gives the user the option of clearing the memory of only one parameter by
clicking on a specific message box. Turning off the improviser clears all memories at once.

Tutorial 33 Probability Tables

159

If we really wanted to make this improviser patch into a completed Max program for
someone else to use, we would probably hide everything except the controls (plus a few
comments to tell the user what to do). We left most things visible here so you could
examine the patch.

Summary

histo keeps an internal histogram of the numbers it has received. When it receives a
number in its left inlet it adds the number to its internal histogram, sends a report of how
many times it has received that number out the right outlet, and sends the number itself
out the left outlet.

The output of histo can be sent directly to a table, so that the frequency of occurrence of
each number, as reported by histo, is stored as a value in the table. You can open the
graphic window of the table to see the histogram.

A clear message in the left inlet of histo or table sets all values to 0. A bang in the left inlet of
table causes it to send out an address rather than a value. The probability of a specific
address being sent out depends on the value it stores, compared to the other values in the
table. The greater the stored value of an address, the more likely that address is to be sent
out when a bang is received. This feature of table allows you to use it for probability
distributions.

By sending bang to a table that contains a histogram (a frequency distribution of past
numbers, received from histo), you can cause numbers to be sent out of the table, with the
likelihood of getting a number based on how frequently it has occurred in the past.

togedge is used to detect a change in the zero/non-zero status of incoming numbers.
When the numbers change from 0 to non-zero, a bang is sent out its left outlet; when the
numbers change from non-zero to 0, a bang is sent out its right outlet.

Using route to detect specific selectors (the first item in a message), messages can be
routed to different destinations.

See Also

histo Make a histogram of the numbers received
table Store and graphically edit an array of numbers
togedge Report a change in zero/non-zero values
Quantile (Max Topics) Using table for probability distribution
Tables Using the table graphic editing window

160

Tutorial 34: Managing Raw MIDI Data

midiin and midiout

MIDI objects such as notein, noteout, bendin and bendout, transmit and receive specific
types of MIDI data. If you want to transmit or receive all types of MIDI data as individual
bytes (including status bytes), use midiin and midiout.

The midiin object is useful for examining every incoming MIDI byte. As we will see in
Tutorial 35, it is also used for recording MIDI from your gear into the sequencer object,
seq. The midiout object is used for sending any type of MIDI message to the synth,
including system exclusive messages. It is also used to send MIDI data that is played back
from the seq object.

In the simplest possible situation, Max can turn your computer into a very expensive
MIDI thru box, by simply connecting the outlet of midiin to the inlet of midiout. These two
objects—in fact, all MIDI objects—can be given a letter argument specifying a single port
through which to receive or transmit, so you can use the arguments to route MIDI data
from one port to another.

Tutorial 34 Managing Raw MIDI Data

161

You can also change the input or output port of any MIDI object dynamically by sending
the name of a port in the inlet. Beware of the possibility of stuck notes if you change ports
while notes are being played.

If there is no port specified for midiin or midiout, either by an argument or by a port
message in the inlet, port a is assumed by default. For more information about port
assignment, see the Ports section of this manual.

capture

If you just want to examine the MIDI bytes that your equipment is sending out, you can
connect the outlet of midiin to a capture object, as we have done in this Tutorial patch.

The capture object is a good all-purpose debugging tool. It collects the numbers it receives,
and when you double-click on it, it opens a Text window for you to view the numbers.
The numbers stored in capture are not saved when the patch is closed, but you can save
the Text window as a separate file or copy the numbers and paste them somewhere
else—even into a graphic Table window. Whenever you want to see what numbers are
being sent from an outlet, just connect the outlet to a capture object, run the patch, then
view the contents of capture.

• Send out various types of MIDI messages from your keyboard: pitch bend,
modulation, notes, program changes, etc. Every byte is received by midiin and stored
in capture. Double click on the capture object to see the MIDI data.

Tutorial 34 Managing Raw MIDI Data

162

midiparse and midiformat

The midiparse object sorts the raw MIDI data it receives from midiin or from seq, and sends
the vital sorted data out its outlets. The combination of midiin and midiparse is like having
all of the specialized MIDI receiving objects in one place.

The midiformat object performs exactly the reverse function of midiparse. It prepares data
into well-formatted MIDI messages with the appropriate status byte, and sends each byte
to midiout for transmission to the synth.

Parsing and Formatting MIDI Data

In the example patch, we have shown a couple of ways in which diverse MIDI data from
midiparse may be used to control objects in Max, or may be given another meaning and
transmitted with midiformat and midiout.

The controller data from the third outlet of midiparse is sent to route, which selects only
data from controller 1, the mod wheel. The mod wheel data, from 0 to 127, is mapped to
the range 64 to 0, then it is reassigned as pitch bend data by midiformat and transmitted to
the synth. The resulting effect is that the mod wheel of the keyboard also controls the
pitch bend. As the modulation increases from 0 to 127, the pitch is bent downward from 64
to 0.

Tutorial 34 Managing Raw MIDI Data

163

This type of reassignment is a convenient way of correlating two different kinds of
control data.

Another part of the patch shows how you can select data from a group of MIDI channels.
The channel number is used to open or shut a gate for the note data. Only note data on
channels 1 through 8 is sent on, and the pitch data triggers a number from the table.

• Play notes on your MIDI keyboard and you will hear that each note-on pitch is also
used as an address to trigger a value from the table. If you set your keyboard to
transmit on a channel between 9 and 16, the notes will not be passed by the gate.

Copying Captured Values into a table

The incoming pitch bend data is sent out of midiparse to a capture 128 object. The argument
to capture sets the quantity of numbers it will store. This is one way to produce values for a
table quickly and easily. It’s a good way to preserve something you have done, such as a
nice pitch bend, and save it in a table for future use.

To copy captured pitch bend values into a table:

Tutorial 34 Managing Raw MIDI Data

164

1. Click on the clear message to clear the capture objects.

2. Move the pitch bend wheel for at least 3.2 seconds. (The speedlim object limits the
incoming pitch bend values to 40 per second.) After 3.2 seconds, the earliest values
received by capture will be lost as new ones are received.

3. Double-click on the capture 128 object to open its Text window.

4. Select all the numbers in the Capture window.

5. Choose Copy from the Edit menu.

6. Close the Capture window.

7. Double-click on the table object to open its graphic editing window.

8. Choose the Selection tool from the Table window palette.

9. Choose Select All from the Edit menu.

10. Choose Paste from the Edit menu.

11. If you want to, you can save the Table window as a separate file, for future use in
patches.

Stepping Through a table

In the left part of the Patcher window we introduce another way to step through the
values in a table. A table object has a pointer—a place in memory where it stores an
address. You can set the pointer to point at any address in the table with the word goto,
followed by the address number in the left inlet.

Tutorial 34 Managing Raw MIDI Data

165

For example, the message goto 0 sets the pointer at address 0 in the table, the first address.

A next message sends out the value in the
address at the pointer…

…then sets the pointer to the next
address

When the message next is received in the left inlet, table sends out the value stored at the
address at the pointer, then increments the pointer to the next address. When the pointer
reaches the last address in the table, a next message will cause it to wrap around and point
to the first address again, so you can use next to cycle continuously through a table. (You
can also cycle backward through a table with the prev message, not shown in this patch.)

Thus, in our patch values are sent out of the table each time a pitch is played on your
keyboard (on channels 1 through 8), and values can also be sent out automatically by
turning on the metro to send repeated next messages to the table.

System Exclusive Messages

MIDI system exclusive (sysex) messages are used to send information other than that
which is established as standard by the MIDI specification. Sysex commands are
implemented by manufacturers as a way of modifying settings on their gear via MIDI.

Max has a sysexin object for receiving system exclusive messages, but to send sysex
messages you need to format them yourself and then send them using midiout.

Tutorial 34 Managing Raw MIDI Data

166

There is an object to help you format sysex messages, called sxformat. The sxformat object
lets you specify some bytes of a MIDI message as arguments, and other bytes as
changeable arguments to be replaced by numbers received in the inlet(s).

The format of changeable arguments in an sxformat object is different from that of
changeable arguments in a message object. Changeable arguments in sxformat:

• contain the letter i to indicate that they are integer arguments (as in $i1)

• are preceded by the word is

• are bounded on either side by a slash (/)

For example, the changeable argument / is $i2 / will be replaced by the number received in
the second inlet (or the second number in a list received in the left inlet).

Calculations can even be performed on incoming numbers using the changeable
argument. For example, the changeable argument / is $i1 + 1 / adds 1 to the number
received in the left inlet before sending it out.

When sxformat receives a number or a list in its left inlet, it uses the number(s) to replace
any changeable arguments, then sends each of the arguments out the outlet in sequential
order.

Programmers often express bytes of a sysex message in hexadecimal format, rather than
decimal. If you prefer to type hexadecimal numbers, you can do so in Max by preceding
the hexadecimal number with 0x (zero-x).

Tutorial 34 Managing Raw MIDI Data

167

Here is an example of the same sysex message expressed in hexadecimal:

An Example Sysex Message

The status (beginning) byte of any sysex message is always 240. The second byte is the
Manufacturer ID; each major synthesizer manufacturer has a unique number assigned to
the brand name. The next bytes are established by the manufacturer—as many as are
needed to express whatever is being expressed. A sysex message always ends with the
“end-of-sysex-message” byte, 247.

When a synthesizer receives the sysex status byte, 240, it looks at the second byte. If the
second byte is the ID of some other manufacturer, the synth ignores all the subsequent
bytes until it sees 247. Then it begins to pay attention to incoming MIDI messages again.

In the bottom-right corner of the Patcher window is an example of the use of sxformat. It
is designed to change the effective pitch bend range on a Yamaha DX7 synthesizer (or TX
sound module). The first argument is the sysex status byte, 240, and the second argument
is the Manufacturer ID for Yamaha, 67. Yamaha decided that the next byte would tell the
synth what kind of message it’s going to receive; in this case, 16 means “parameter change
on channel 1.”

The fourth byte specifies that the sysex message is a performance parameter change. The
next byte is the parameter number—3 is for pitch bend range.

The next byte specifies the setting for the pitch bend range—how many semitones up and
down we can bend the pitch. This is the value we want to be able to change, so we’ve
made this byte a changeable argument in sxformat. The pitch bend range value must be
from 0 to 12 semitones, so we’ve included a % 13 calculation to limit incoming numbers

Tutorial 34 Managing Raw MIDI Data

168

between 0 and 12: / is $i1 % 13 /. That’s the end of the data portion of the message, so the
ending byte, 247, comes next.

When a number is received in the inlet, the entire message is sent out, one number at a
time, using the incoming number as the pitch bend range value.

• If you have a Yamaha DX7, you can change the pitch bend range by dragging on the
number box. If you don’t, your synth will ignore this message.

Extra Precision Pitch Bend Data

Most MIDI keyboards transmit and receive 128 different pitch bend values, and Max’s
MIDI objects do the same. However, a MIDI pitch bend message actually contains
another byte for additional precision in expressing the pitch bend amount, and some
synthesizers take advantage of this capability. If a synth does not have the extra precision
capability, it always transmits a value of 0 in the extra precision byte, and ignores the
extra byte when it is receiving pitch bend messages.

For MIDI keyboards that do have the extra precision capability, Max has objects for
interpreting incoming extra precision pitch bend data received from midiin, and for
formatting extra precision pitch bend messages to be transmitted by midiout.

Because relatively few MIDI instruments have this capability, we don’t discuss the matter
in detail in this Tutorial. For more information, look under xbendin and xbendout in the
Max Reference Manual.

Note-Off Messages with Release Velocity

In MIDI there are two ways to express a note-off. One way is as a note-off message with a
release (key-up) velocity, and the other way is as a note-on message with a key-down
velocity of 0. Since most synths are not sensitive to key-up velocities, noteout uses the
latter method for note-offs.

Tutorial 34 Managing Raw MIDI Data

169

For synths that are sensitive to key-up velocity, however, Max has objects for interpreting
and formatting note-off messages with release velocity. To read more about these objects,
look under xnotein and xnoteout in the Max Reference Manual.

Summary

The midiin object outputs each byte of MIDI data it receives. The midiout object transmits
any number it receives in its inlet. You can set these objects to transmit or receive
through a specific port by typing in a letter argument, a device name, or by sending a port
message in the inlet.

The midiparse object interprets raw MIDI data from midiin and sends each type of data out
a different outlet. The counterpart to midiparse is midiformat, which receives data in its
various inlets and prepares different types of complete MIDI messages, which are sent by
midiout.

To aid you in formatting system exclusive messages to be sent by midiout, sxformat lets you
type in arguments which it sends out one at a time as individual bytes. You can include
changeable arguments in sxformat which will be replaced by incoming numbers before the
message is sent out.

The capture object stores a list of all the numbers it receives. You can view the list in a Text
window by double-clicking on the capture object, and you can copy the contents of that
Text window into a Table window. The capture object is good for viewing any stream of
numbers when you are trying to figure out exactly what numbers are coming out of an
outlet.

See Also
midiformat Prepare data in the form of a MIDI message
midiin Output incoming raw MIDI data
midiout Transmit raw MIDI data
midiparse Interpret raw MIDI data
sxformat Prepare MIDI system exclusive messages

Tutorial 34 Managing Raw MIDI Data

170

xbendin Interpret extra-precision MIDI pitch bend messages
xbendout Format extra precision MIDI pitch bend messages
xnotein Interpret MIDI note messages with release velocity
xnoteout Format MIDI note messages with release velocity
Ports (Fundamentals) How MIDI ports are specified

171

Tutorial 35: seq and follow

seq

Max has four objects for recording and playing back MIDI performances: seq, follow, mtr,
and detonate. In this chapter of the Tutorial we will discuss how to record a single track of
MIDI data with the basic sequencing object seq, and how to compare a live performance
to a previously recorded performance—in order to follow along with a performer—using
follow.

The seq object records and plays back raw MIDI data in conjunction with midiin and
midiout. It understands various text messages to control its operation, such as stop, start,
and record.

Patch 1 contains the basic seq configuration shown above, plus a few other useful
messages.

• Click on the record message box in Patch 1. Play notes, pitch bends, and modulation on
your MIDI keyboard. Click on the word start to hear your performance played back.
(You don’t need to click on stop first, because start automatically stops the recorder
before playing back.)

There is probably a delay before you what you played, because you didn’t start playing at
exactly the same moment you sent the word record to seq. The delay message can be used to
change the starting time of the sequence.

• Click on the message containing delay 0 to set the starting time of the sequence to 0.
Now when you click on start again, the sequence starts playing immediately.

The start message can be followed by a number argument specifying the tempo at which
you want the sequence to be played back. The start argument divided by 1024 determines
the factor by which the tempo will be increased or decreased. So, for example, the
message start 1024 indicates the original (recorded) tempo, the message start 1536 plays the
sequence back 1.5 times as fast, start 512 plays it back half as fast, and so on.

Tutorial 35 seq and follow

172

In the upper-left corner of Patch 1 we’ve devised a way to calculate the tempo ratio,
letting you specify the tempo in terms of a multiplier, with 1 being the normal tempo.

• Drag on the number box to choose a tempo multiplier. (You can change the fractional
part of the number by dragging with the mouse positioned to the right of the decimal
point.) Then click on the button to play your sequence at the new tempo.

Changing the playback speed in this manner does not actually change the times recorded
in the sequence, it merely changes the speed at which seq reads through it. Another
message, called hook (not shown here), alters the times in a sequence. Look under seq in
the Max Reference Manual for details.

Saving and Recalling Files

If you like, you can save the sequence you have recorded in a separate file, to be used later.
The write message opens a standard Save As dialog box for you to name the file where you
want to store the sequence. You may want to give the names of your sequence files some
unique characteristic so you can distinguish them from Patcher files and Table files. (We
use .sc at the end of the name to identify the file as a musical score).

If you check Save as Text in the dialog box when you save the file, you can view the
sequence in a Text window by choosing Open As Text… from the File menu. Otherwise,
the file is stored as a standard MIDI file.

To load a saved file into a seq object, send the read message to seq, and a standard Open
Document dialog box will appear so you can choose the file you want to load in. If the read
message is followed by a file name argument, seq loads that file automatically (provided
it’s located where Max can find it). You can set seq to load a file automatically when the
patch is opened by typing the name of the sequence file as an argument to the seq object.

• Click on the message containing read bourrée.sc to load in a brief melodic excerpt from a
Bach bourrée in E-minor. Send a start message to seq to hear the melody.

Tutorial 35 seq and follow

173

Processing a MIDI Sequence

The output of seq is in the form of individual bytes of MIDI messages, and can be
transmitted directly to the synth with midiout. It can also be sent to midiparse, however,
and the parsed data can then be processed by other Max objects before it is sent to the
synth.

In the patcher transpose object we parse the raw MIDI data received from seq, transpose
the pitch of the notes by some amount, then reformat the MIDI messages and send them
to midiout.

• Double-click on the patcher transpose object to see its contents.

The patcher transpose subpatch contains a nested subpatch, the notetransposer patch that we
made in Tutorial 27. Subpatches can be nested in this manner so that each task of a patch
is encapsulated and is easily modified. (For more on this subject, look under
Encapsulation in this manual.)

Notice that we have included an additional handy feature inside the patcher transpose
subpatch: a flush object to turn off held notes. When seq is playing a sequence and gets
stopped by a stop message, it may be in the middle of playing a note, and the note-off
message will not be sent out.

In Patch 1, we made the stop message also trigger a button which sends a bang to the flush
object in the subpatch to turn off any such stuck notes.

Tutorial 35 seq and follow

174

In general, whenever your patch is capable of stopping seq while notes are being recorded
or played back, there is the potential for vital note-off messages to be lost. This is
especially true if your patch sends stop, record, or play messages by some automatically
generated means. Bear this potential danger in mind when constructing your patch, and
include an object such as flush, midiflush, poly, or makenote—whichever is appropriate—to
provide missing note-offs. Examples are shown in Tutorial 13.

• Record a sequence (or use the bourrée excerpt), and play the sequence with a start
message. Try changing the transposition with the hslider while the sequence is playing.

follow

The follow object is very similar to seq in its ability to record MIDI data. But whereas seq
only records MIDI messages, follow can also record a sequence of single numbers that are
not in the form of complete MIDI messages (such as the pitches from MIDI note-ons).

follow can record MIDI messages, or single numbers (e.g., just note-on pitches)

A sequence can be stored in follow by recording MIDI data, by recording a series of single
numbers, by reading in a file with a read message, or by typing in a file name argument.
Once it has a stored sequence, follow can use that sequence as a musical score, and follow
along while a performer plays the music. Each time the performer plays a pitch that
matches the next note-on in the stored sequence, follow sends the pitch out its right outlet
and sends the index number of that note’s position in the sequence (1, 2, 3, etc.) out its left
outlet.

Tutorial 35 seq and follow

175

The particular utility of this score-following feature is that the index numbers can be used
to trigger other notes, or any other process such as, say, turning on a metro when the 15th
note is matched.

How follow Follows

When follow receives the message follow with a number argument, it begins to look for
incoming pitches which match the notes in the score, starting at the index specified in the
argument. For example, follow 10 causes the object to look for incoming pitches that match
the 10th note in the score. When the matching pitch is received, follow sends that pitch
out its right outlet, and sends the index out its left outlet.

The follow object even allows for wrong notes, so if the performer plays a couple of
spurious notes, or skips a note or two, follow will still be able to keep track of the
performer’s progress through the score.

One can also step through the score with repeated next messages. After a follow message has
been received, the message next triggers the pitch at the specified index and increments the
pointer to the next index.

An Attentive Accompanist

When we use the index numbers from the left outlet of follow as addresses of a table, or
addresses of some other array object like funbuff, the index numbers can trigger other
values. In this way, we can create an accompanist who “knows the score” and follows
along with the performer. Each time the performer plays a note of the score, the
accompanist has a specific reaction—play a simultaneous note or notes, play some
independent melody, rest, whatever—and seems to follow along with the performer.

Tutorial 35 seq and follow

176

We’ve made such an accompanist in Patch 2. The accompanist plays the left hand part of
the Bach E-minor bourrée while you play the right hand part. The follow object has loaded
the sequence file bourrée.sc to use as the score. Each time a note of the score is played, an
index number is sent out that triggers some sort of reaction.

• Click on the follow 0 message to start the score-follower at the beginning of the score.
Play the right hand part of the bourrée excerpt and Patch 2 will play the left hand part
along with you.

• If you’ve forgotten how the melody goes, read the bourrée.sc sequence into the seq
object in Patch 1 and listen to it.

• Click on follow 0 again, and play the melody with an occasional wrong note or skipped
note. If you don’t mess up too much, follow manages to account for your mistakes and
continues following the score.

• Try the melody again, with ritards at the end of the phrases. The extra notes that the
accompanist plays match your tempo.

Analysis of Patch 2

Sometimes we want the left hand to play a note along with the right hand, other times we
want the left hand to do nothing new (when the right hand is playing the second of a pair
of eighth notes and the left hand is just holding a quarter note), and occasionally we want
the left hand to play a note in between notes played by the right hand. How do we
accomplish each reaction?

The index numbers are first sent to a subpatch called patcher silencer. This subpatch simply
filters out the index numbers which we don’t want to trigger a note of the
accompaniment. The sel objects select those index numbers and pass the rest on.

Contents of the patcher silencer subpatch

Tutorial 35 seq and follow

177

Notice that sel objects can be linked together to select more than 10 numbers, since the
numbers that are not matched by the first sel object are passed out the rightmost outlet to
the second sel object.

The remaining index numbers are sent as addresses to funbuff, which sends out an
appropriate accompanying pitch value. To make funbuff respond properly, we simply
made a list of addresses and values and saved the list as a funbuff file named bourrée.fb.

• If you want to see the contents of funbuff, choose Open As Text… from the File menu
and open the file named bourrée.fb.

We could have also stored the accompaniment pitches in a table—or in a coll object,
which will be explained in Tutorial 37.

So far we have made the accompanist play some notes that are simultaneous with the
melody notes, and we’ve made the accompanist rest on melody notes that are
unaccompanied, but how about when the accompanist has to play notes on its own, in
between melody notes? This occurs twice in the score, once at the end of each phrase.

To help the accompanist play notes on its own, the patcher addnotes object measures the
tempo of the performance and plays notes with a delay time based on its perception of the
performer’s tempo.

Contents of the patcher addnotes subpatch

For example, the subpatch measures the amount of time between notes 24 and 25 of the
melody (the speed of an eighth note), then delays for that amount of time before
triggering the pitch 42. Likewise, the time between the 41st and 43rd melody notes (the

Tutorial 35 seq and follow

178

speed of a quarter note) is used as a delay time before sending out the pitch 38. This is a
simple (but fairly effective) method of analyzing the performer’s tempo and playing notes
in that tempo.

It’s always a good idea in programming (and elsewhere, for that matter) to prepare for the
unexpected. What happens if the performer accidentally misses one of these notes that we
need for analyzing the tempo and triggering added accompaniment notes?

If the performer misses the first note of a pair, for example, the second note will trigger a
ridiculously large value from the timer and the accompaniment note will get delayed far
too long. To protect against this eventuality, we have used split objects to limit the time
values that can be sent to delay within certain (only moderately ridiculous) extremes. If the
value from timer exceeds these limits, the delay object will use the delay time in its
argument. If the performer misses the second note of a pair but continues on, the added
note will never get played, but by then the performer will have passed that point anyway,
and follow will keep up with the performer.

The pitches from patcher addnotes and from funbuff are sent to makenote where they are
paired with the velocity of the right hand melody notes, so the accompanist is sensitive to
the performer’s dynamics, as well. Rather than use an algorithm or a lookup table to
provide durations for the accompaniment notes, we just picked a duration that seems to
work both as an eighth note duration and as a stylistically staccato quarter note.

Summary

A single track of raw MIDI data can be recorded and played back (at any speed) with the
seq object. The MIDI data is received from midiin and is transmitted by midiout. You can
also parse the data from seq using midiparse, and process the numbers with other Max
objects before transmitting them.

A recorded sequence can be saved as a separate file by sending a write message to seq. If
you check the Save as Text option in the Save As dialog box, you can open and edit the
file later with Open As Text…. A MIDI file can be read into seq by sending a read
message, or by typing in the file name as an argument.

The follow object allows you to record or read in a sequence, then use that sequence as a
musical score to follow along with a live performance. As the pitches received in the inlet
are matched with notes in the score, the index number for each note is sent out, and can
be used to trigger other notes or processes.

Tutorial 35 seq and follow

179

See Also

follow Compare a live performance to a recorded performance
mtr Multi-track sequencer
seq Sequencer for recording and playing MIDI
Sequencing (Max Topics) Recording and playing back MIDI performances

180

Tutorial 36: Multi-track Sequencing

mtr

The mtr object is Max’s most versatile sequencer. It can record and play back up to 32
different tracks of messages: numbers, lists, or symbols. The tracks can be recorded and
played back either separately or all together. With this versatility, you can record and play
back not only MIDI bytes, but numbers from any object such as a slider or a dial,
sequences of text messages to be displayed to the user, pitch-velocity lists, etc.

We’ll show how mtr is used to record and play back MIDI data.

The number of tracks in an mtr object is specified by a typed-in argument. The leftmost
inlet is a control inlet for receiving commands, and the other inlets are for messages you
want to record. The command messages for mtr are similar to those for seq, but not
identical. Notably, mtr understands the message play instead of start, and the play message
does not take a tempo argument.

When command messages such as stop, play, record, mute, and unmute are received in the left
inlet they apply to all tracks of mtr. These commands can be followed by a number
argument, however, specifying a unique track to which the message applies. Alternatively,
these messages can be received in an individual track’s inlet, to give a command to just
that track.

A 4-Track “Simul-Sync” Recorder

Patch 1 shows a configuration to record four separate tracks of MIDI note data
separately, then play them all back together. number box objects let you specify the track
you want to record on and, if you wish, a track to listen to while you are recording.

Tutorial 36 Multi-track Sequencing

181

When you choose a track to record, the gate opens that outlet to let the record message and
the note data go only to that track.

• Set the open gate outlet to 1 (to record on track 1), and click on the record message.
Play some notes on your MIDI keyboard. When you are finished recording, click the
play message to hear what you have recorded.

• Now open gate outlet 2, and enter the number 1 in the number box at the top of the
patch so that you can listen to track 1 while you record track 2.

When you click the “simul-sync” button, the message play 1 will be sent to the left inlet of
mtr, and the message record will be sent to the inlet of track 2.

Tutorial 36 Multi-track Sequencing

182

• Click the button and record track 2. When you have finished, click on play to hear both
tracks.

You can continue in this manner to record all four tracks. If there is some delay between
the time you click play and the time the sequence starts to play, it’s because you took some
time to begin recording notes after you clicked record. To eliminate this delay, and cause
the first event in mtr to begin at time 0, click the message first 0.

Notice that once again we have included a flush object to guard against stuck notes. Every
time a stop message is sent to mtr, a bang is also sent to flush to turn off any notes currently
being held.

Recording Messages from Different Sources

Note data is not the only thing that can be recorded with mtr; messages from virtually any
combination of objects can be recorded and played back by the same mtr object. In Patch
2 we record numbers from pgmin, bendin, ctlin, and a dial, each on a different track.

• Click on the record message in Patch 2 and send pitch bend, modulation, and program
change messages from your MIDI keyboard for several seconds. You can also move
the dial with the mouse. When you have finished, click play and you will see your
performance played back, controlling other objects.

The first 0 message can be used to eliminate the delay between the time you clicked record
and the time you started to transmit MIDI messages from the keyboard. The message
delay 0 causes every track to start at time 0, even if you started sending data to the tracks at
different times.

Tutorial 36 Multi-track Sequencing

183

• To see the difference between first 0 and delay 0, click on record and send about 5 seconds
of pitch bend data, then 5 seconds of mod wheel data, and so on. When you have
finished, click stop.

• Next, click first 0 to eliminate the initial delay before any data was recorded. Click play
to see your performance replayed.

• Now click delay 0 and play your sequence again. This time all tracks start at time 0,
even though you started recording data on one track before the others.

When you send mtr a mute message while it is playing, it continues to play its stored
sequence, but it suppresses the actual output. Use the unmute message to restore output.
Individual tracks can be muted and unmuted by following the mute or unmute message with
a track number argument, or by sending the messages into a specific track’s inlet.

You can step through the messages stored in mtr by sending repeated next messages to the
control inlet. When mtr receives next, it sends out the next message stored in each track. It
also sends a two- item list out the leftmost outlet once for each track, reporting the track
number and the duration (the time between that message and the following one in the
track).

• Check All Windows Active in the Options menu, and bring the Max window to the
front so you can see what gets printed in it. Then click on the next message. The next
value stored in each track is sent out the track outlets, and a list for each track,
consisting of the track number and the duration between messages, is sent out the left
outlet.

The rewind message is used in conjunction with next. It sets the pointer back to the
beginning of the sequence, so that the message next will start at the beginning again.

Tutorial 36 Multi-track Sequencing

184

Summary

The mtr object records and plays back up to 32 tracks of any message type—numbers,
lists, or symbols. Tracks can be recorded, played, stopped, muted, and unmuted—either
individually or all tracks at the same time.

The next message can be used to step through the recorded messages instead of playing
them back at their original recorded speed.

See Also

detonate Graphic score of note events
follow Compare a live performance to a recorded performance
mtr Multi-track sequencer
seq Sequencer for recording and playing MIDI
Detonate (Max Topics) Graphic editing of a MIDI sequence
Sequencing (Max Topics) Recording and playing back MIDI performances

185

Tutorial 37: Data Structures

What Is a Data Structure?

A data structure is any collection of data that is stored in some arrangement that allows
individual items to be found easily. In Tutorial 32, we used the table object, a data
structure called an array, where we used an index address to access the stored values. In
this chapter, we’ll use some objects that allow you to create your own collections of data
and retrieve them with whatever addresses you wish.

coll

The most versatile data structure object in Max is the coll (short for collection). A coll
object stores a collection of many different messages, of any type and length (up to 256
items long), and can give each message either a number address or a symbol (word)
address.

Any time coll receives a list in its inlet it uses the first number in the list as an address, and
stores the remaining items in the list at that address. (You’ll recall that a list is any space-
separated set of items beginning with a number.) For example, when coll receives the
message 36 sequencer start 2048, it stores the message sequencer start 2048 at address 36. After that,
whenever coll receives the number 36 alone, it sends the address (36) out the second outlet,
and sends the message sequencer start 2048 out the left outlet.

You can also store messages with a symbol as an address instead of a number. If you just
send it a message beginning with a symbol, coll will try to interpret the symbol as another
kind of command, and won’t store the rest of the message. So, to store messages with a
symbol as the address, you must precede the symbol with the word store.

When coll receives a message beginning with the word store, it uses the first item after the
word store as its address, and stores the rest of the message at that address. When coll

Tutorial 37 Data Structures

186

receives that address alone in the inlet, it sends it out the right outlet (preceded by the
word symbol), and sends the stored message out the left outlet.

Here’s the same patch, using a symbol as an address for the message stored in coll, instead
of a number.

coll precedes the symbol address it sends out its second outlet with the word symbol so that
the address will not be interpreted as a command by other objects. For example, a message
box will not be triggered by a word, because it will try to understand the word as some
kind of command. However, if the word is preceded by symbol, the message box will be
triggered and the word will replace a $1 changeable argument in the box.

Editing the Contents of coll

To view and edit the contents of a coll, double-click on the object and a Text window will
open. If you make any changes to the Text window, you will be asked whether you want
to keep those changes in the coll when you close the Text window.

The contents of a coll are written in a specific format. For details, look up coll in the Max
Reference Manual.

Saving the Contents of coll

Once you have stored messages in coll, you can set it to save its contents as part of the
patch. You unlock the Patcher window, select the coll object, choose Get Info… from the
Object menu, and check Save coll with Patcher in the Inspector window.

Alternatively, you can save the contents of the coll as a separate file (so the contents can be
used by more than one patch). To do this, open the coll object’s Text window and choose
Save As… from the File menu. Another way to save the contents as a separate file is to
send a write message to the coll object, which opens a Save As dialog box.

Tutorial 37 Data Structures

187

To load a file into a coll object, type the name of the file in as an argument, or send coll a
read message, which will cause the Open Document dialog box to appear.

Storing Chords in coll

• Double-click on the patcher coll_examples object to open the subpatch window.

• Play some long notes on your MIDI keyboard. Every key on the keyboard has a
unique 3-note chord assigned to it.

The chords are stored in a coll object, using the key number (the pitch of the played note)
as the address.

• Double click on the coll object in Patch 1 to see how the chords are stored. If you want
to change some of the chords, edit the numbers in the Text window, then close the
window to update the contents of the coll.

When a pitch value is received in the inlet, coll sends out the 3-item list stored at that
address. The list is broken up into a series of numbers by iter, and the numbers are sent
(virtually simultaneously) to noteout, where they are combined with the note-on or note-
off velocity being played on a MIDI keyboard.

The rest of Patch 1 is for storing your own chords in a coll. When pitch data is routed out
the right outlet of the Ggate, the note-on pitches are sent to a thresh object.

The thresh object is like iter in reverse. Numbers which are received within a certain
threshold of time are packed together in order. The threshold is the maximum number of
milliseconds between any given number and the previous one. When no new number is
received within a certain period, the numbers are sent out as a list.

So, when you play notes of a chord simultaneously (within 50ms of each other) they are
packed as a list, and after 50ms they are sent out. The unpack object selects the first three
numbers and stores them in pack. Then, when you select an address by entering a number
in the number box, the address and the accompanying chord notes are all sent to coll as a

Tutorial 37 Data Structures

188

list for storage. The number box has been set to send only on mouse-up so that you can use
it as a slider to enter an address. Otherwise, the chord would be stored in the address of
every number you dragged through.

• Click on the Ggate to point its arrow to the right outlet.

• Play a 3-note chord that you want to store in coll. Play it as a 4-note chord first, to hear
it along with the address note that will eventually trigger it, then play it as a 3-note
chord to store it in pack.

• Use the number box to select the address where you want to store your chord.

• Repeat the above steps until you have stored all the chords you want, then click on
Ggate again to direct the played pitches back to coll. Play the address notes to hear the
results.

If you want to save your new chords, you must open the coll object’s Text window again
and choose Save As… from the File menu.

Parsing the Data Structures in a coll

Patch 2 shows how coll can be used to store messages with symbol addresses, and it also
shows how complex messages can be stored in coll and then parsed when they are sent
out.

Tutorial 37 Data Structures

189

• Click on the different messages in Patch 2.

• Double-click on the coll object in Patch 2 to view its contents.

The format we have chosen for our data structure in this coll is: metro command, tempo
(duration), and note velocity. Because each message stores the data in the same order, we
can access individual items in the data structure and use the item in a specific way.

The data structure is parsed as it comes out of the coll. The message is first sent to route. If
the first item of the message is 1 (meaning metro on), we use the remaining items in the
message to supply a duration to makenote, a tempo to metro, and a velocity to makenote. If
the first item in the message is not 1 (in this case, 0 is the only other possibility), nothing
needs to be sent, so route ignores the message. After the essential data is supplied to metro
and makenote, the first item is used to turn the metro on or off.

Other Features of coll

These examples should give you a taste of what coll can be used for. There many other
command messages which coll understands, too numerous to cover in detail in this

Tutorial 37 Data Structures

190

Tutorial. For example, you can step through the different messages in coll with goto, next,
and prev commands. And you can select or alter individual items of stored messages with
commands such as nth (to get the nth item within a message), sub (to substitute an item in
a message), and merge (to append items at the end of a message). For details about these
commands, look under coll in the Max Reference Manual.

• Before you go on and look at the other subpatches, you will want to disable the chord-
playing patch in the [coll_examples] window. Point the arrow of Ggate to the right
outlet, or disable MIDI in the window by clicking on the MIDI enable/disable icon in
the title bar. Close the [coll_examples] subpatch window.

menu

The menu object creates a pop-up menu in a Patcher window. It can be used to choose
commands with the mouse, just like any other menu, and it can also be used to display
messages when the number of a menu item is received in the inlet.

When an item in the menu is selected with the mouse (or by a number received in the
inlet), the number of the menu item is sent out the left outlet. The items in the menu are
numbered beginning with 0.

Tutorial 37 Data Structures

191

After you create a new menu object, choose Get Info... from the Object menu to open the
menu Inspector. You type the menu items into the large text field in the Inspector
window, separating them by commas. The menu items can be any type of message:
numbers, lists, words, sentences, whatever. If you want to include a comma within a menu
command, you must precede it with a backslash (\).

If Evaluate Item Text is checked in the Inspector window, menu will send the text of the
item out the right outlet. If you check the Auto Size option, the width of the menu will
automatically adjust according to the length of the text in menu commands.

• Double click on the patcher menu_examples object to open the subpatch window.

Tutorial 37 Data Structures

192

We’ve hidden many of the objects in this subpatch, to give you a visual idea of how
menus may be used to enhance the user interface of a patcher program.

• Record and play back a MIDI sequence using the Sequencer menu in the left part of the
window.

It’s easier to use a single menu than it is to click on a bunch of message boxes, it’s more
aesthetically pleasing, and it has the advantage of displaying the most recent command.

• Unlock the [menu_examples] window to see how the menu is connected in the patch.

The right outlet sends the actual text messages to seq.

In the other patch, the menu has a dual purpose of sending values and displaying the
values it receives. If you have a lot of different sounds available on your synth, you may
not be able to memorize all the program change numbers. A menu can help you associate
the name of a sound (the text of a menu item) with a program change value (the item
number).

When you select a menu item with the mouse, the item number is sent to pgmout as a
program change value. Just as the names of sounds are specific to a given synthesizer, so
may be the numbering system used by the synthesizer manufacturer. You’ll need to figure
out exactly how MIDI program change values correspond to the sound numbers on your
synth. In this example we left menu item 0 empty, and used menu items 1 to 32 to store

Tutorial 37 Data Structures

193

the names of sounds, so selecting a sound will transmit a program change value from 1 to
32.

• Look at the menu Inspector for the Synthesizer Sound menu. Notice how we left the
first menu item empty (by starting the text with a comma) so that we could use items 1
to 32.

How did we get more items in the menu than will fit into the dialog box? We typed the
items in a Text window, then copied them and pasted them into the menu Inspector.

• You may want to replace our list of sounds with one that corresponds to your
equipment.

We also wanted to display incoming program change values, so we directed them to the
inlet of our menu. However, we don’t want the program change to be sent out again, so we
use the set message to set the menu to the specified item without causing any output.
Likewise, we want the number box to reflect numbers from the menu, but we don’t want it
to send the number back to the menu because that would cause a stack overflow. Once
again, the set message is the solution.

• Close the [menu_examples] window and double-click on the patcher preset_examples
object to open the subpatch window.

preset

The preset object can store and recall the settings of other user interface objects in the
same window such as slider, dial, number box, and toggle objects. When you recall a stored
setting, preset restores all these objects back the way they were at the moment the settings
were stored. You can even connect the outlet of a preset to a table to store and recall
various versions of the table object’s contents.

Tutorial 37 Data Structures

194

The preset can operate in one of three ways. If the left outlet of preset is connected to the
inlet of other user interface objects, it stores and recalls the settings of only those objects.
Or, if the right outlet of preset is connected to the inlet of other objects, preset stores and
recalls the settings of all user interface objects in the window except those objects. If
neither the left nor right outlet of preset is connected to anything, preset stores the settings
of every user interface object in the window (except table objects, which can only be stored
by being connected to the left outlet of a preset).

In the [preset_examples] window, the preset object is actually connected to the table with a
patch cord, but we have hidden the patch cord for aesthetic reasons.

• Before you use the patch, enable All Windows Active in the Options menu. Then
double- click on the table object to open its graphic editing window. You can draw in
pitch values from 0 to 60 (which will be transposed up into the keyboard range by the
Offset of the lower hslider), and then play those pitches by dragging on the upper
hslider.

• When you have drawn a pitch curve that you like in the Table window, enter a
number in the number box marked Store, and the table values will be stored in that
preset location.

• Repeat the process until you have stored several table presets. Then you can recall
different ones by entering a number with the number box marked Recall.

• Now unlock the [preset_examples] window to see what’s going on behind the scenes.

Tutorial 37 Data Structures

195

The number box objects labeled Store, Recall, and Clear are actually sending messages to
the preset.

To store settings in a preset location, you send the message store, followed by the number
of the preset location. To recall a preset, just send the number of that preset alone. To
clear a preset, send the message clear, followed by the preset number. clearall will clear all
stored presets.

You can save the contents of preset in a separate file with the write message, and load a file
in with the read message.

• Double-click on the patcher another_example object to see the sub-subpatch.

The preset object in the [another_example] window already has 16 presets stored in it, as
part of the patch. To store the contents of a preset along with a patch, rather than as a
separate file, you select the preset object, choose Get Info… from the Object menu, and
check Save Presets with Patcher.

This patch shows you another way to store and recall presets: you Shift-click on a preset
to store the current settings, and you can then recall the settings by just clicking on that
preset. The number of preset locations in a preset object is not dependent on the object’s
physical size. Each preset object holds 256 preset locations, even if they aren’t shown
within its object box.

Tutorial 37 Data Structures

196

• Click on different preset buttons to recall different toggle and number box settings. Try
creating your own repeated note patterns and storing your settings in the preset
object.

There are no hidden patch cords in this window. When a preset is not connected to
anything, it stores the setting of every user interface object in the window.

Summary

A data structure is used to store data so that individual items can be easily accessed.

The coll object stores any kind of message, with either a number or a symbol as the
address. Data to be stored can be received as messages in the inlet or typed into a coll
object’s text editor window. When coll receives an address in its inlet, it sends the address
out its second outlet, and sends the message stored at that address out its left outlet.

The contents of a coll object can be stored as part of the patch that contains it, or as a
separate file. A file can be loaded into a coll object with the read message, or by typing the
file name in as an argument.

The message sent out by coll can be parsed by other objects to select particular items from
the data structure. Also, individual data items can be sent out or altered by certain
commands in a coll object’s inlet.

The menu object is a pop-up menu in a Patcher window, and the menu items (commands)
can be any kind of message. The menu may be used for selecting commands with the

Tutorial 37 Data Structures

197

mouse and/or for displaying messages. When a menu command is selected, either with the
mouse or by a menu item number received in the inlet, menu displays the command,
(optionally) sends the stored message out the right outlet, and (always) sends the item
number out the left outlet.

The preset object lets you store the settings of every other user interface object in the
window at a certain point in time, then recall those settings at some later time. If the left
outlet of preset is connected with patch cords, to certain objects, preset stores and recalls
the settings of only those objects. The contents of a table can also be remembered by
preset, but the table must be connected to preset. The preset object can store and recall up
to 256 different collections of the settings of all user interface objects.

See Also

coll Store and edit a collection of different messages
menu Pop-up menu, to display and send commands
preset Store and recall the settings of other objects
Data Structures (Max Topics) Ways of storing data in Max

198

Tutorial 38: exp and if

C Language Expressions

The Max application itself is written in the C programming language, and many of the
terms and object names (such as && and || for and and or) in Max have a basis in C. For
programmers who have some experience with C or Pascal, and who feel comfortable
using traditional programming language syntax, Max provides objects for evaluating
mathematical expressions and conditional statements that are expressed in a C-like way.

Even if you don’t know a programming language, you can understand and use these
objects. Often a complex comparison or mathematical calculation that would require
several Patcher objects can be expressed in a single phrase, in a single object. Also, you
can do a few calculations with these objects that you can’t do with any of the other
arithmetic operators.

expr

The arguments to the expr object make up a mathematical expression (formula) in a
format that is similar to C programming language. For example, the C expressions…

x = 67; y = 96; z = (x % 12 + 1) * abs(y - 127);

can be expressed in an expr object as

Tutorial 38 expr and if

199

Without using expr, you would perform the calculation with a patch with many objects
that looks like this:

• To see an example of an object-based solution to a programming problem, and a
comparable solution using expr, double-click on the patcher expr_example object.

For this example, we want to solve the following problem: as the modulation wheel
progresses from 0 to 127, send pitch bend values from 64 to 127 and back down to 64.
The patch on the left shows a standard Patcher way of doing this. The patch on the right
shows the different tasks all combined into a single mathematical expression in expr.

Notice that the changeable arguments in an expr object include a letter, as in $i1, to tell
expr what data type to use for that argument (i for int, f for float).

• Move the modulation wheel on your MIDI keyboard from 0 to 127, and you’ll see that
both methods of stating the mathematical expression work equally well. However, it’s
a bit more memory-efficient to use a single object instead of four.

Tutorial 38 expr and if

200

if

Another staple of C programming is the if () ; else ; combination. In Pascal, this is
expressed as IF condition THEN statement ELSE statement. In plain English this means: if
a certain condition is met, do one thing, otherwise do another thing. Sometimes this way
of thinking about the world just seems to make a lot more sense than a bunch of boxes
connected together with wires!

Max has an object called if which lets you express programming problems in an
if/then/else format. If the comparison in the arguments is true (does not equal 0), then the
message after the word then is sent out the outlet, otherwise, the message after the
(optional) word else is sent out.

So, the conditional statement

if the received number is greater than or equal to 64,
send out 127,
otherwise send out the received number

would be expressed as

An object-based way of saying the same thing might be:

Tutorial 38 expr and if

201

The then and else portions of the if object contain a message similar to that you would type
into a message box. You can include changeable arguments, but not mathematical
expressions as you can in the portion of the message after the if.

If the then or else portions of the if object begins with the argument out2, then the object has
a second outlet on the right, and the message is sent out the right outlet.

The then portion and else portions can also begin with send, followed by the name of a
receive object. In that case, the output is sent to all receive objects with that name, instead
of out the outlet.

• Double-click on the patcher if_example object to see the usefulness of if.

The problem in this example was, “If the note G1 is played with a velocity between 16 and
95, start a sequence, otherwise increment a counter somewhere else.” The example shows
that a great many tasks can be combined into a single if/then/else expression. In this
instance, one if object does the work of nine other objects.

C Math Functions

The C math library has many functions for such calculations as logarithms, trigonometric
ratios, x to the power of y, and so on. Max does not have specific objects for these
functions, but they can be included in the arguments of an expr object. This is a real
strength of expr, because it lets you make calculations you would not otherwise be able to
make in a Max program.

In the main patch of this example, we use two different math functions, sin() and pow() to
calculate pitch bend curves to be stored in the table. One formula makes a single cycle of a
sine wave with a range from 0 to 127. The other formula draws exponential curves from
64 to 127.

• Check the All Windows Active option and double-click on the table object to open its
graphic window. Click on the button at the top of the patch to draw a cycle of a sine
wave in the Table window.

Tutorial 38 expr and if

202

The expression in expr converts the input to a float by using the $f1 argument (instead of
$i1), in order to do a floating point calculation. It divides the input by 128, (so as the input
progresses from 0 to 127 it will produce a progression from 0 to almost 1), multiplies the
input by 2� (approximately 6.2832), and calculates the sine of that amount. The resulting
sine wave values are multiplied by 63.5 and offset by 63.5 to expand them to the proper
range, and the final result is converted back to an int before being sent out.

• The expression in the other expr is a simple exponential mapping function. Click on
Ggate to point it to the right outlet. Drag on the number box to select an exponent for
the curve to be calculated by expr. An exponent of 1 produces a straight line, an
exponent greater than 1 yields an exponential curve, and an exponent less than 1
yields an inverse exponential curve.

• Click on the button to draw the curve in the Table window. Try different exponent
values and redraw the curve.

Large numbers of exponential calculations—especially with a large exponent—require
fairly intensive processing for the computer to calculate. For this reason it’s often better to
perform such calculations in advance and store the values in a table to be accessed later,
rather than to calculate the values on the fly while the computer is performing music.

Once the curve is stored in the table, it is read through by a line object each time you play
a note on your keyboard. The values are sent to bendout to be transmitted to the synth as
pitch bend. The speed with which line reads through the table depends on the velocity of
the note you play.

• Play long notes on your keyboard with widely varying velocities, and listen to the
different speeds with which line reads through the curve in the table. Draw different
curves in the table to hear their sonic effect.

Summary

The expr object takes a C-like mathematical expression as its argument, including
changeable arguments. When a number is received in the left inlet, expr replaces the
changeable arguments, evaluates the expression, and sends out the result.

The if object evaluates a conditional statement in the form “if x is true then output y else
output z”. The conditional statement can contain changeable arguments. The output can
be sent to receive objects instead of out the outlet.

Tutorial 38 expr and if

203

Both if and expr are capable of combining the computations of several Patcher objects into
a single object, which is usually more memory-efficient.

The expression in the argument of expr can contain C math functions such as pow() and
sin(), and can also contain relational operators. For details on the operators and functions
you can use, look under expr in the Max Reference Manual.

See Also

expr Evaluate a mathematical expression
if Conditional statement in if/then/else form

204

Tutorial 39: Mouse Control

mousefilter

There may be times when you want to see the exact value that is going to be sent out of a
slider or dial before it is actually sent. The mousefilter object helps you do that. It receives
numbers in its inlet, but passes them on only when the mouse button is up. Consider the
example below.

While you are dragging on the hslider, the numbers are sent to the number box for display,
but mousefilter does not pass them on because the mouse button is down. When you
release the mouse button, the last number is sent out the outlet of mousefilter.

The patch in the left part of the Patcher window is very similar to this example, except
that we have hidden the mousefilter object and the patch cords. When you drag on the dial,
the upper number box shows the output of dial, but no number is sent to the lower number
box (and to pgmout, also hidden) until the mouse button is released.

• Drag on the dial to select a new program change number. Nothing is sent to your
synth until you release the mouse button.

The button at the top-left corner of the patch triggers a line object to step through the
program changes automatically over the course of 16 seconds.

• Click on the button. While the dial is being automatically controlled, you can use the
mouse to suppress certain program change numbers. Whenever you hold the mouse
button down, mousefilter acts as a gate to shut off the flow of numbers to pgmout.

• Unlock the Patcher window to see how the connections are made. Lock the window
again before trying the rest of the patch.

Tutorial 39 Mouse Control

205

Using the Mouse Position to Provide Values

The large box in the example Patcher window was imported from a graphics application
and pasted into the window using Paste Picture from the Edit menu. It delineates a
pitch-velocity grid in which you can drag with the mouse to play notes. The gray area
shows the pitch space that corresponds to the range of a 61-key keyboard (C1 to C6).

• Before using the pitch-velocity grid, you must click on the most extreme bottom-left
corner of the box. This tells Max where the 0,0 point is.

• After you have done that, click and/or drag inside the box to play notes with the
mouse.

Pitch Velocity
B 2 111

Duration
177

Velocity

0
0

127

64

1279636 <-- Pitch -->

When you hold down the mouse button inside the box, notes are played continuously.
Moving the mouse from left to right in the box increases the pitch. Moving from bottom
to top increases the velocity. Large changes upward or downward cause the tempo of the
notes to increase or decrease.

The mouse is not moving any kind of slider or other type of user interface object, so how
does it send out notes?

• Unlock the Patcher window and scroll to the right to see what’s going on.

mousestate

The generator of numbers in this patch is the mousestate object. When it receives a bang in
its inlet, mousestate report the current horizontal and vertical location of the mouse out its
left-middle and middle outlets.

Tutorial 39 Mouse Control

206

A location on the screen is expressed as a horizontal-vertical pair of numbers, normally
measured as the number of pixels away from the upper-left corner of the screen.
Horizontal location is measured from left to right, and vertical location is measure from
top to bottom.

The cursor is 127 pixels to the right of, and
81 pixels down from, the upper-left corner of the screen

When mousestate receives the message zero, it uses the current mouse location as the new 0,
0 point, and makes all subsequent measurements in terms of that new point. That’s why
you click on the bottom-left corner of the pitch-velocity box before starting. We’ve
situated a tiny ubutton object on the corner of the box, so when you click there it triggers a
zero message to mousestate and sets that point as the new 0, 0 point.

mousestate also reports the status of the mouse button. It sends out 1 when the button is
pressed and 0 when it is released. We use this feature in our patch to control the metro
object which sends bang messages to mousestate. Since metro only sends a bang when the
mouse button is down, mousestate only sends out location values while the mouse is
down.

The two right outlets report the change in location since the previous report. The
horizontal location, the vertical location, and the change in vertical location are used in
this patch to supply values for pitch, velocity, and tempo. Each range of values has to be
limited and processed slightly differently to place the values in an appropriate range.

For example, the pitch-velocity box is 256 pixels wide, so we limit the horizontal location
values between 0 and 255 with a split object, then divide them by 2 to get a range of pitches
from 0 to 127. The box is 128 pixels high, but remember that vertical location is measured
from top to bottom, so when the mouse is in the box the vertical values will range from 0
to -127. We therefore limit the vertical values between -127 and -1 and use the abs object to

Tutorial 39 Mouse Control

207

make the values positive. (We don’t want any 0 velocities because they’ll be supplied by
makenote.)

To get the tempo, we use the change in vertical location of the mouse. But we only want
to detect substantial change, so we first filter out slight changes (±7 pixels). Then we limit
the values between -128 and 128 and use expr to map that range onto an exponential curve
from 40 to 500. Thus, a large increase in velocity causes a fast tempo, while a large decrease
in velocity causes a slower tempo. A gradual change in velocity does not change the
tempo.

Summary

When the mouse button is down, mousefilter suppresses all numbers it receives until the
button is released, then it sends out the last number it received. mousefilter can be used as
a mouse-dependent gate, especially to allow you to view many numbers but only send on
the ones you want.

Every time mousestate receives a bang, it sends out the location of the mouse and the
change in location since the last report. These values can be used to provide continuous
musical control, giving you the ability to use the entire screen as a field in which to
produce values in two dimensions by moving the mouse.

When the mouse button is pressed mousestate sends 1 out its left outlet, and when it is
released mousestate sends out 0. These values can be used to turn a process on and off, or
to open and shut a gate.

See Also

mousefilter Pass numbers only when the mouse button is up
mousestate Report the status and location of the mouse

208

Tutorial 40: Automatic Actions

Opening a Subpatch Window

Your programs can automatically open and close Patcher windows and detect when a
window is opened or closed, triggering some action.

• When you open the example patch for this chapter of the Tutorial, the window of the
subpatch object stopwatch is opened immediately and begins to display the time
elapsed since the window was opened.

As we explained earlier (in Tutorial 26), a patcher object will open automatically if you
leave its subpatch window open when you save the Patcher that contains it. A subpatch
saved as a separate file, however, (such as stopwatch) will always have its window closed
when the main patch is opened.

To open the [stopwatch] window, which would normally not be open, we used two
objects, loadbang and pcontrol.

loadbang and closebang

The loadbang object sends out a bang once when the Patcher that contains it is opened
(loaded into memory). This allows you to trigger certain actions immediately when a
patcher is loaded. You can use loadbang to open gate and switch objects (which are closed
when a patch is opened), start timing objects such as metro, or supply initial number
values to an object such as number box.

Tutorial 40 Automatic Actions

209

The counterpart to loadbang is closebang (not shown here) which can be used to trigger
actions— such as turning off a metro or resetting the contents of a table—when a patcher
is closed.

pcontrol

Subpatch windows can be opened and closed by the pcontrol object. When pcontrol receives
an open or close message in its inlet, it opens or closes the window of any subpatch objects
connected to its outlet.

In the left part of the main Patcher window you can see how the [stopwatch] window was
opened automatically. The bang from loadbang triggered an open message to pcontrol, which
opened the window of the stopwatch object.

Using pcontrol, you can produce multi-window patches with each window displaying
something different, and you can make pcontrol show or hide windows when appropriate.

Note: Because opening and closing windows takes some time, it’s not advisable to do it
while Max is playing music, unless you’re in Overdrive mode.

• You can stop and restart the stopwatch by clicking on the toggle in the [stopwatch]
window. To open and close the [stopwatch] window, send open and close messages to
pcontrol.

• Close the [stopwatch] window, and open the [clicktrack] window by sending an open
message to the other pcontrol object. When the [clicktrack] window is opened, a 4-note

Tutorial 40 Automatic Actions

210

click track automatically begins to play, at the metronomic tempo shown in the
number box.

The pcontrol object can also enable and disable MIDI objects in the subpatch windows it
controls. The message enable 0 in the inlet of pcontrol disables the MIDI objects in the
subpatch, and enable 1 (or any number other than 0) re-enables them. Bear in mind, if you
make a patch that automatically disables the MIDI objects in a subpatch, that you run the
risk of causing stuck notes on the synth if you cause a note-off message to be lost.

• Enable All Windows Active so that you can click in the main Patcher window
without bringing it to the foreground. Then click on the toggle in the main Patcher
window to disable MIDI. The sound stops, but the led continues to flash.

led

The led object is an on/off indicator similar to toggle, but not identical. Whereas toggle
passes on any number it receives, led outputs only 0 or 1 indicating the zero/non-zero
status of the number it receives. When led receives a bang, it flashes and outputs 0. You can
change the color and flash time of an led object by selecting it and choosing Get Info…
from the Object menu.

active

What makes the clicktrack and stopwatch objects run automatically when their windows are
brought to the foreground? They are controlled by another automatic control object,
active.

• To see the hidden objects in the subpatches, you must open the actual file in which
the subpatch is saved. Choose Open… from the File menu to open the file named
stopwatch.

• Stop the time display by clicking on the toggle in the stopwatch window, then unlock
the window to see its hidden objects.

Tutorial 40 Automatic Actions

211

When a window is made active (i.e., brought to the front), the active object in that window
sends out 1. When the window made inactive (is no longer in front) active sends out 0. We
have used active to turn a clocker object on automatically whenever the window is brought
to the foreground.

The active object sends out a number only in response to a change in its
foreground/background status, and is not affected by the setting of All Windows Active.
When All Windows Active is checked, you can click in any window without first
bringing it to the foreground, but only the foreground window is technically active. When
you move a window to the background, an active object in that window sends out 0, but
when you close the window active does not send a 0, because it’s not actually being sent to
the background.

Even though the stopwatch object doesn’t get any messages from other objects, it needs to
have an inlet so that it can be controlled with pcontrol. You can include a dummy inlet
object in a patch for this purpose.

• Close the stopwatch patch and open the file named clicktrack. Turn off the toggle in
the clicktrack window, and unlock the window to see its hidden objects. You can see
that it contains an active object to turn on tempo whenever the window is made active.

Tutorial 40 Automatic Actions

212

The numbers 0 to 3 sent out by tempo are multiplied and transposed to play the pitches
C5, E5, G#5, and C6.

The clicktrack object has one inlet for receiving new tempo values, but this same inlet can
be used by pcontrol in the main patch to control the [clicktrack] window.

Summary

The loadbang object sends a bang whenever the patch that contains it is loaded into
memory. The closebang object sends a bang when the patch that contains it is closed. These
bang messages can be used to start processes, open or close a gate, send a message, etc.

When the pcontrol object receives an open or close message, it opens or closes all subpatch
objects connected to its outlet. You can also enable or disable MIDI using the enable 1 and
enable 0 messages to the pcontrol object. Disabling MIDI objects while a note is being
played, however, may cause a note-off message to be lost, leaving a stuck note on the
synth.

The active object sends out 1 when the window that contains it is brought to the front and
0 when some other window is brought to the front.

See Also

active Send 1 when window is active, 0 when window is inactive
closebang Send a bang automatically when patch is closed
loadbang Send a bang automatically when patch is loaded
pcontrol Open and close subwindows within a patcher

213

Tutorial 41: Timeline of Max Messages

Writing a score

Composers of orchestral music write the activities of all the players out together in a
single score, so that all the predetermined events can be seen together, organized in time.
Composers of computer music often use a MIDI sequencing program for a similar
purpose. In Max, the timeline object exists as a combination of score and sequencer.

A timeline in Max is a multi-track sequencer of Max messages. Each track in the sequence
is a Max Patcher (referred to as an action patch), and the events that are placed in each
track are messages which will be sent to specific objects in the action patch at the desired
moment. And just as a prerecorded sequence (or imported MIDI file) can be read into a
seq object and played from within a patcher, a prerecorded timeline can be read into a
timeline object and played back from within a patcher.

• In order for the timeline in this Tutorial to work correctly, you should make sure that
the Overdrive setting in the Options menu is checked.

• When you open the example patch for this chapter of the Tutorial, two other
windows are opened, as well, although they may be hidden behind the Patcher
window. One is the graphic editor window for a timeline, and the other is a
QuickTime movie window.

(Note: If you don’t have the QuickTime extension installed in your system, the
QuickTime movie window will not appear, and you should disregard references to the
movie when reading this chapter of the Max Tutorial.)

Tutorial 41 Timeline of Max Messages

214

This patch has two main components. On the right side of the window is a seq object
containing a prerecorded sequence (which was read in automatically from a file named
tutorial41.sc). It can be controlled by messages sent from the menu object, or by messages
received remotely from a send†seqcmd object somewhere else. Notice that any message
sent to seq also sends a bang to midiflush, to turn off any notes that may be held at the
moment when seq is stopped or restarted.

A bang received by midiflush turns off any held notes

On the left side of the window is a timeline object containing a prerecorded timeline
(which was read in automatically from a file named tutorial41.ti). The other objects
around it are for sending it control messages or for handling its output. We’ll come back
to this portion of the patch presently.

The Timeline Window

• To see the contents of the timeline, bring the timeline graphic editor window to the
foreground by double-clicking on the timeline object (or by choosing tutorial41.ti
from the Windows menu).

This timeline has two tracks. Track 1 contains events to be sent to an action patch; track 2
contains only markers, which mark specific important points in the timeline. The first
track contains a variety of event editors, each of which contains one or more events
(messages) to be sent to the track’s action patch at a specific time. The action patch
contains ticmd objects, which receive these messages (as if they had come in through
inlets) and use them in the patch.

For example, the event editor containing the text seqcontrol start is called a messenger; it
sends the message start to a ticmd object named seqcontrol in the action patch. The ticmd is

Tutorial 41 Timeline of Max Messages

215

connected to a seq object, which will receive the start message from ticmd. So, four seconds
after the timeline begins to play, a sequence will be started by the seqcontrol start event.

This event in the timeline sends its message... ...out the outlet of the named ticmd object
in the track’s action patch

But where is the action patch that will receive these messages and do things with them?
The action patch is a Max document on the hard disk, like any other patch you have
created and saved. It can be anywhere in Max’s file search path. In this case, it’s in the
same folder as the tutorial patch (the Max Tutorial folder). There is also a special folder
called tiAction in the Max folder, where you can keep action patches that the timeline will
display in its Track pop-up menu. In any case, the timeline finds the file and loads it into
memory to be used by a single track of events. You can view (and even edit) the action
patch from within the timeline.

Actions and ticmd

• To see the action patch, double-click on the small Max icon at the left end of track 1.

An action patch contains one or more ticmd objects, for receiving messages from the
timeline. Each ticmd object has a name (its first argument), and specifies the type of
message(s) it expects to receive. The name of each ticmd object in the action will appear as
a possible event in the timeline track.

Tutorial 41 Timeline of Max Messages

216

For example, just by looking at portions A and B of the action, we can see that the
timeline may contain events named pitch, volume, and bend which would send int values to
their respective ticmd objects.

Any volume event in the timeline will be sent out (via the ticmd volume i object) as the value
of a MIDI controller 7 message, to modify the volume of the synth. Similarly, any bend
event in the timeline will be sent out as a MIDI pitchbend message. A pitch event will be
played as a 200ms note, with a randomly chosen velocity somewhere between 64 and 127.
(A random number from 0 to 63 is chosen, then 64 is added to that number before it is
sent to the velocity inlet of makenote.)

An action patch doesn’t need to handle all the events itself. It can simply send them
somewhere else, by connecting the outlet of ticmd to a send object or a tiout object, as is
done in portions C and D of this action.

The tiout object passes any messages it receives in its inlet out the specified outlet of the
timeline object itself. So, in this case, note or scalespeed events from the timeline get sent out
the outlet of the timeline object in the 41. Timeline patch. (You might find it useful to
think of tiout objects in an action as analogous to outlet objects in a subpatch. They send
messages out the outlets of the timeline that contains them.) We also see that seqcontrol
messages do not go directly to a seq object in the action; rather, they go to a send seqcmd
object, so in fact they will come out anywhere that there is an existing receive seqcmd

Tutorial 41 Timeline of Max Messages

217

object. This is another way that the timeline can communicate with patches other than
one of its own action patches.

thistimeline

Let’s look at one more feature that’s available in an action: the thistimeline object. Any
message received by a thistimeline object in an action gets transmitted to the timeline that
contains that action. In this way, a timeline can actually send control messages to itself! In
portion E of this action, there are two ticmd objects, for handling goto and gotoA events
from the timeline.

When a gotoA event is reached in the timeline (and the Ggate is pointing to the proper
outlet), it bangs the search SectionA message box, sending that message to the timeline. The
timeline will then look for a marker called SectionA, and relocate itself to that marker if it
finds it. When a goto event is reached in the timeline (and the gate is open), it sends a
number (specifying a point on the timeline, in milliseconds) to the locate $1 message box,
which causes the timeline to relocate to that point. In either case, the timeline will
continue to play after it has relocated itself to the new point.

In order to give the user some control over the timeline’s behavior, the mod wheel of the
synth (controller 1) is used in this action to block or let pass the gotoA and goto messages.
Notice that a gotoA message will be passed out the proper outlet of Ggate only if the most
recently received mod wheel value is 0, and a goto message will pass through the gate only
if the mod wheel is at some non-zero position.

Reading the timeline Score

• Close the tutorial.ac window so that you can see the timeline editor window again.

Now that you have seen what’s going on in the action patch, you can figure out what will
happen when the timeline is played. In the first four seconds, there is a whole table full of

Tutorial 41 Timeline of Max Messages

218

pitch events, which will be sent out one-by-one over the course of those four seconds. (A
table of values is placed as an event in a timeline with the etable event editor.) There is
also a graph of volume events, which will likewise be sent out continuously over the span
of time covered by the event editor (known as an efunc).

Four seconds into the timeline, a seqcontrol event will send the message start. We have
already seen that this start message will go from the timeline to the ticmd seqcontrol s object in
the action, to a send seqcmd object in the action, to a receive seqcmd object in the 41. Timeline
patch, and from there to the seq tutorial41.sc object, starting the sequence.

• Scroll to the right in the window to see the remainder of the timeline.

At the 8000 milliseconds (8 seconds) point on the timeline, there appear to be several
simultaneous events. You can examine a pop-up menu containing their exact times by
holding down the mouse in the left portion of the track, just under the track name.

From this list of events you can see that the gotoA bang event occurs just before the other
events. You know from examining the action patch that this will cause the timeline to
relocate to the SectionA marker (located at time 4000), provided that the mod wheel of the
synth is in the 0 position. The timeline will continue to loop from 4000 to 8000 until the
mod wheel has been moved to a new position.

Tutorial 41 Timeline of Max Messages

219

When the gotoA bang event is reached, and the mod wheel is in a non-zero position, the
message will not go out the left outlet of the Ggate in the action, so the timeline will be
permitted to continue on its normal course. It will then send the note events (from the
messenger objects), an emovie event (a start message that is transmitted directly to the movie
object in the action), and an etable full of bend events (a series of ints sent out one-by-one).
At time 10000, it will send a goto 8001 event, thus relocating itself to that point in the
timeline (provided that the mod wheel has not been returned to its 0 position).

So, at time 8002 the timeline will start the movie, play a four-note chord, and begin
bending the pitch; then at time 10000 it will relocate itself to time 8001 and continue
playing until the mod wheel is at 0 at time 10000. (Note: because you have the Overdrive
option checked—which is necessary for the MIDI data to be sent out with the proper
timing—the QuickTime movie may move jerkily or intermittently, depending on the
speed of your CPU.)

You may recall that in the action patch the note messages received from the timeline (the
four-item lists in the above example) get passed out the second outlet of the timeline
object.

• Bring the 41. Timeline Patcher window back to the foreground to see what happens to
those note messages.

Tutorial 41 Timeline of Max Messages

220

The lists that are sent from the timeline as note messages come out the second outlet of the
timeline object, where they are broken up into individual numbers by an unpack object.
The first three numbers in each note message go directly to a noteout object to be used as
the pitch, velocity, and channel information of a MIDI note-on message. The 1st, 3rd, and
4th numbers of the note message also go to a pipe object, where the 4th number is used as
the number of milliseconds to delay before sending on the other numbers.

Note that since nothing ever gets sent into the second inlet of pipe, the number coming
out the second outlet will always be 0. These delayed numbers go to noteout, and provide
the note-off message. This is a convenient method of providing note-offs, by specifying a
note duration and using that number to delay a second note message with a velocity of 0.
It’s similar to using a makenote object, but allows you to delay the channel number, as well
(which makenote does not do).

Playing the timeline

Now that you understand what the different events in the timeline do, you have a pretty
good idea what will happen when you play it. In the first four seconds, the notes in the
pitch table will be played and the volume will be adjusted by the volume graph. From time
4000 to 8000 the tutorial41.sc sequence will be played repeatedly until you move the mod
wheel of your synth. Then at time 8002 a chord will be played, pitchbend messages will be
sent out from the bend table, and the QuickTime movie will be played.

Tutorial 41 Timeline of Max Messages

221

The time from 8001 to 10000 will repeat until you move the mod wheel back to 0.

• Use the Windows menu to bring the QuickTime movie window to the foreground.
(You can drag it to the upper-right corner of the screen so that you can still see the
Patcher window.) Check the All Windows Active command in the Options menu so
that you can leave the movie window in the foreground and still click on objects in the
Patcher window.

• To play the timeline, just click on the message box that says play in the Patcher
window. When you get bored with the repeating sequence in SectionA, move the mod
wheel and the timeline will progress on to the Coda section. To stop the timeline, click
on the stop message in the Patcher window. To go back to the beginning, click on the
locate 0 message box, or choose Intro from the Go To pop-up menu in the Patcher
window.

Controlling the timeline’s Tempo

Like the clocker, line, metro, pipe, and tempo objects, a timeline object can be synced to a
setclock object, and its tempo will then be controlled by that setclock object rather than by
Max’s regular millisecond clock.

• Click on the message box that says clock scalespeed. That instructs the timeline object to
sync to the setclock scalespeed mul object. Click on the locate 0 message box, to “rewind”
the timeline, then click play. You will notice some changes in the tempo of the Intro
section.

Whenever a setclock object with a mul argument receives a number in its left inlet, it
multiplies its clock values (i.e., divides its tempo) by that number. In this case, the tempo

Tutorial 41 Timeline of Max Messages

222

changes come from the timeline itself. Specifically, scalespeed event editors (float objects) in
the Intro section of the timeline transmit numbers to the ticmd scalespeed f object in the
action patch, which sends them (via a tiout 1 object) out the first outlet of the timeline
object.

scalespeed events in the timeline track are received by the ticmd object in the action patch,
and are sent out the first outlet of the timeline object to setclock which changes the timeline

object’s tempo

The above example is a rather complex situation, which is included here primarily in
order to demonstrate timeline object’s ability to control itself, and to demonstrate the
operation of the tiout and setclock objects. However, the numbers that go into setclock to
change its tempo could come from any source, such as a slider or a MIDI controller (with
the proper arithmetic to map the numbers to an appropriate range of floats).

• If you want to revert timeline to following Max’s regular millisecond clock, click on the
message box that says clock.

There is only one remaining part of the patch that has not yet been explained. When the
timeline receives the message markers 3 (as it does when the patch is loaded), it sends the
first word from each of its markers out its third outlet, to be stored in the menu object.
This menu can then be used to cause timeline to go immediately to any of the markers.

• Try using the menu to jump to a specific section in the timeline. You can do this while
the timeline is playing.

Tutorial 41 Timeline of Max Messages

223

Editing the timeline

The timeline in this tutorial example has already been arranged and saved in a file named
tutorial41.ti. You can make changes to the timeline by bringing the graphic editor
window to the foreground. For example, you can change the volume graph in the Intro
section just by clicking and dragging on the control points in the graph, or by clicking
where no control point exists to create a new one.

• Double-click on the etable editor of pitches in the Intro section. You will be presented
with a table editing window, and you can change the values in the pitch table.

Notice that the table editing window has a title: intropitches. That’s because this particular
etable has been linked to the table intropitches object in the action patch. When you create an
etable (or efunc) event editor in a timeline track, you can link it to an existing table object
(or funbuff object in the case of efunc) by selecting it, choosing the Get Info... command
from the Object menu, and typing in the name of the object as the Table Label for your
editor. From then on, any changes you make in the etable will affect the table object to
which it is linked, and vice versa.

To place new events in a timeline track, you hold down the Option key on Macintosh or
the Alt key on Windows and click on the mouse in the event portion of the track at the
point where you want to place the event. You will be presented with a pop-up menu of all
the possible events you can place in that track, based on the ticmd objects in the action
that the track is using. If there is more than one possible editor for a particular event (for
example, an event of type int can be placed using an int, etable, or efunc editor), the editors
are presented in a submenu. You choose the event you want from the pop-up menu, then
enter the message you want that event to send to the ticmd object.

Tutorial 41 Timeline of Max Messages

224

• Try placing a note event in track 1 at time 4000. Move the mouse in the event portion
of the track until the indicator at the top of the window tells you that your cursor is at
time 4000. Option-click on Macintosh or Alt-click on Windows in the track (in some
white space where there are no other events in the way) and choose a note event from
the pop-up menu. You will get a messenger event editor, into which you can type the
note information. As we have seen, a note event should be a four-item list in the
format pitch-velocity-channel-duration, so type in 28 96 1 1000 to play a low E on
channel 1 for 1 second.

You can play your timeline without leaving the graphic editing window, by using the tape
recorder style controls at the top of the window.

Summary

A timeline is a multi-track sequencer, each track of which sends messages to ticmd objects
in a specified action patch. You place events (messages) in a track in non-real time by
Option-clicking on Macintosh or Alt-clicking on Windows at the desired location on the
timeline. The messages come out the outlet of the ticmd object in the action patch, and can
either be used inside the action patch or sent elsewhere via a send object or a tiout object.

Once the “score” of Max messages has been composed on the timeline, it can be saved in
a file, and then can be accessed from a patcher by reading the file into a timeline object.
You play the timeline by simply sending a play message in the inlet of the timeline object.
You can also move to a specific time location in the timeline with the locate message, or by
searching for a marker event with the search message.

An action patch can send messages out the outlet of the timeline object that contains it, via
the tiout object. An action can also control the timeline that contains it, via the thistimeline

Tutorial 41 Timeline of Max Messages

225

object. The tempo of a timeline can be controlled in real time by syncing it to a setclock
object and sending messages to the setclock (possibly even from the timeline itself).

See Also

setclock Modify clock rate of timing objects
thistimeline Send messages from a timeline to itself
ticmd Receive messages from a timeline
timeline Time-based score of Max messages
tiout Send messages out of a timeline object
Timeline (Max Topics) Creating a graphic score of Max messages

226

Tutorial 42: Graphics

The Graphics Window

In Max you can state the vital information about a musical note in terms of integers
specifying key number, velocity, channel, and (with makenote, for example) duration in
milliseconds. Max also allows you to place pictures and geometric shapes of color
onscreen, using integers to state the position, size, priority (foreground-background
level), and color of the images. Since both sounds and images are described with integers,
it’s a simple matter to write patches that correlate the two.

In order to display animated graphics, you need to include at least one graphic object in
your patch. Each graphic object opens a graphics window automatically when the patch is
opened.

• When you open the example patch for this chapter of the Tutorial, a graphics window
titled is opened by the graphic object.

The first argument gives the graphics window a name, which appears in the title bar of
the graphics window. (In this case, the graphics window’s title bar is hidden behind the
menu bar.) Other objects will use the window name to refer to the window in which they
are going to draw.

The four number arguments following the window name specify the four corners of the
drawing area of the window—top, left, right, and bottom—in terms of pixels from the top
left corner of your screen. We have made the window precisely fill a 9" screen, leaving
twenty pixels at the top for the menu bar.

The graphic object can receive open and wclose messages. The wclose message is particularly
helpful in a case like this, where the close box is hidden behind the menu bar. Obviously,
the open message is necessary to reopen the window once it has been closed, and it can
also be used to bring the window to the foreground. We have also used the key object to
include keyboard shortcuts o and w for open and wclose, since the graphics window
completely covers the Patcher window once it has been brought to the foreground.

Tutorial 42 Graphics

227

Drawing Shapes

• Use the open message, or the o key on your keyboard, to bring the Animation window
to the foreground. Play some notes on your keyboard and watch what happens in the
graphics window. Analyze the correlation between your actions and the graphics
onscreen.

• Choose 42. Graphics from the Windows menu, or use the w key on your keyboard to
close the Animation window. Double-click on the patcher Eight Rectangles object to
examine its contents.

The played pitches and velocities are passed through a poly object, which assigns a unique
voice number, 1 through 8, to each note currently being held. The pitch and velocity are
passed out the middle and right outlets, and the voice number is sent out the left outlet. If
more than 8 notes are held down at a time on the keyboard, poly sends out a note-off
message for the oldest note to make room for the newest note. This is known as voice-
stealing. The first argument tells poly how many notes to hold, and the second argument
(if non-zero) tells poly to steal voices.

The pitch and velocity of the note are used to determine characteristics of the rectangles
to be drawn in the graphics window. The voice number is used to route messages to one
of eight different rect objects.

Shapes and pictures are animated in a graphics window as sprites, objects that draw
themselves in a single place and erase themselves from their old location when they are
drawn somewhere else. Each shape-drawing object such as rect controls a single sprite, so
multiple objects are needed if you want to display more than one shape at a time. We
chose eight rect objects as a reasonable number to take care of most keyboard playing
styles.

The rect object requires an argument telling it which graphics window to draw in. It has
inlets for specifying the coordinates of its four corners—left, top, right, and
bottom—relative to the top left corner of the graphics window’s drawing area. It also has
inlets for the sprite’s pen mode (for a list of pen modes, see oval in the Max Reference
Manual) and color. We use the incoming MIDI data to calculate these characteristics of
the shapes to be drawn, and we pack the numbers for all six inlets as a list, combined with

Tutorial 42 Graphics

228

the voice number at the beginning of the list, so that we can route an entire rectangle
description to the appropriate rect object.

We use only rect objects for drawing shapes in this patch, but the inlets of the frame, oval,
and ring objects are exactly the same.

Correlating Graphics and MIDI

You can make any correspondence you like between MIDI data and graphics data. The
most straightforward solution of the matter is simply to map one range of values to
another. In this patch we use velocity to calculate the height of the rectangle, pitch to
calculate the rectangle’s placement from left to right, and pitch class (C, C#, D, etc.) to
determine its color.

Velocities range from 0 to 127, and the vertical range of pixels in the drawing area is from
0 to 322 (342 - 20 = 322). We made the decision to center all the rectangles vertically in
the drawing area, so we want to calculate the height of the rectangle as a distance up and
down from the center. This means that in fact we want to use the vertical range 0 to 161
(322 ÷ 2 = 161) and 0 to -161, then offset the rectangle downward by 161 pixels.

To convert the velocities to the proper range—0 to -161 or 0 to 161—we multiply by -1.27
or 1.27, then add 161. The resulting values are sent to pack to be stored in the locations for
the top and bottom coordinates of the rectangle. Note that when the velocity is 0, the

Tutorial 42 Graphics

229

height of the rectangle will be 0; both the top and the bottom coordinates will be 161. This
causes the rectangle to disappear when the note is released, because it’s drawn with a
height of 0.

The effect of pitch on the horizontal coordinates of the rectangle is calculated in a similar
manner. The played pitches will range from 36 to 96, and the horizontal range of pixels is
from 0 to 512. We first subtract 36 from the pitch to bring it into the range 0 to 60. Then
if we offset each key of the ascending scale by 8 pixels to the right, and make each
rectangle 32 pixels wide, the notes of the keyboard will precisely span the graphics
window.

There are 256 available colors available to the shape-drawing objects, numbered 0 to 255.
Using the modulo operator %, we can determine the pitch class as a number from 0 to 11.
We add 1 to each pitch class value, to put it in the range 1 to 12, then we assign each pitch
class a color by multiplying it by 20 to distribute it in the range 20 to 240. Finally, we
subtract 1 from it, since the odd numbered colors show up as black on monochrome
monitors. (If we don’t do that, they will all be drawn in white on a monochrome monitor,
and will be invisible.)

Because the pitch and velocity values come out of poly before the voice number, the
rectangle characteristics can all be calculated and stored in pack before the voice number
triggers the message and sends it to route to pass it to the correct rect.

Tutorial 42 Graphics

230

• Close the Eight Rectangles window and open the graphics window again, then play
some notes to verify that the rectangles behave as described.

Animating Pictures and Shapes

To give the illusion that a sprite is moving, we simply draw it several different places in
rapid succession, progressing along a particular trajectory. Any source of a continuous
stream of numbers can therefore be used to control an animation—the pitchbend wheel,
the mod wheel, a volume pedal, a counter, a clocker, a line, etc. In this patch we use a line
object to move a picture along a straight line. The same principle can be applied for
moving shapes.

• Close the graphics window again, and double-click on the patcher Moving Picture object.

A pict object loads an entire graphics file and displays it in a graphics window. Since it
loads and displays the entire file, you will usually want to make sure that your image is
tucked as far as possible into the top left corner of your graphics file, so that the file is no
bigger than it needs to be and has no superfluous white space around the edges.

The first argument of a pict object is the name of the graphics window in which you want
the picture to be shown. The second argument is the name of a graphics file to show. The
file must be located in Max’s search path; if Max can’t find the file, it just prints an error
message in the Max window and displays nothing.

The third argument is the sprite’s priority. The higher a sprite’s priority, the closer to the
foreground it is considered, and it will be shown in front of sprites that have a lower
priority. The default priority of a pict object is 0, while the default priority of a rect is 3, so
by default a rect will cover a pict. We give our pict a higher priority so that the picture will
be drawn in front of the rectangles.

Because the size of a picture is predetermined by the dimensions of the graphics file, you
only need to give pict two coordinates to situate the picture—the coordinates of the left
top corner. A non- zero number or a bang in the left inlet draws the picture at the specified
spot.

In the example patch, line objects are used to change the left and top coordinates
continuously on a trajectory toward a specified goal. The left coordinate goal of the

Tutorial 42 Graphics

231

picture is calculated from the pitch of the played note, just as in the case of the rectangles.
The picture’s distance from the bottom of the window is determined by mapping the
range of note-on velocities (1 to 127) to the range of vertical pixels (going up, 322 to 0).
Because the picture is 32 pixels high, the effective vertical pixel range is 290 to 0.
Multiplying the velocities by -2.3 causes them to range from 2 to -290, and adding 292 to
that gives us the desired pixel range.

The amount of time that each line object takes to move the picture to the target
coordinates is determined using timer objects that measure the elapsed time since the
previous note-on. The interpolation resolution of 33ms was chosen to animate the picture
at a potential rate of 30 “frames” per second. The actual rate at which the image is
redrawn will depend on the speed of your computer.

Summary

Pictures and colored shapes can be drawn in a graphics window, which is created by
placing a graphic object in your patch. The name argument given to the graphic object is
also given to any object that draws in its window. The objects frame, oval, rect, and ring are
used to draw geometric shapes into a graphics window. The pict object loads an entire
graphics file into memory and displays the picture at any specified location in a graphics
window.

Each image in a graphics window is a sprite, which you can move around by redefining its
coordinates, and which is assigned a priority that determines whether it will be drawn in
front of or behind other sprites. You can animate sprites in such a way as to give the
illusion of continuous movement by redrawing them in rapid succession in different
locations along a chosen trajectory. Any continuous stream of numbers may potentially
be used to describe such a trajectory.

Tutorial 42 Graphics

232

The parameters and location of the shapes and pictures drawn in the graphics window
can be easily correlated to MIDI data to create the desired correspondence between sound
and images. This is usually achieved by multiplying a range of values by some factor to
make them appropriate for use both as MIDI data and as pixel locations.

The poly object assigns a unique voice number to each note currently being held. This
voice number can be used to route the note information to different locations, such as
different drawing objects.

See Also

frame Draw framed rectangle in graphics window
graphic Open a graphics window
oval Draw solid oval in graphics window
pics Animation in graphics window
pict Draw picture in graphics window
rect Draw solid rectangle in graphics window
ring Draw framed oval in graphics window
Tutorial 43 Graphics in a patcher
Graphics (Max Topics) Overview of graphics windows and objects

233

Tutorial 43: Graphics in a Patcher

Animation in a Patcher Window

In order for this Tutorial patch to function correctly you need to make sure QuickTime is
installed in your system. You should also disable Max’s Overdrive option to give more of
the computer’s attention to screen drawing activities.

In Tutorial 19 it was pointed out that you can customize the user interface of your patch
by importing pictures from other programs. In this chapter we demonstrate various ways
you can change the contents of a Patcher window dynamically, and even include
animation right in the Patcher window.

In the patch 43. Graphics in a Patcher you see two new large object boxes in the bottom of
the screen. One is the object imovie for playing a QuickTime movie in a Patcher window,
and the other is lcd for drawing lines, shapes, and text. The patcher objects contain
subpatches that control these objects.

There are a few other objects that are invisible to you in this patch, not because they have
been hidden with the Hide On Lock command, but because they have no visible borders.
These objects are bpatcher and menu (in Label mode), which are discussed later in this
chapter.

Playing a QuickTime Movie

• Move the modulation wheel on your synth to a non-zero position.

While the mod wheel is in a non-zero position, the movie in imovie plays in a loop. This
particular movie is only fourteen frames long, so it lasts a little less than half a second. In
those fourteen frames there are only four different frames, so the effective frame rate is
only about eight frames per second, which explains why the motion is rather jerky.

By selecting the object and choosing Get Info… from the Object menu, then choosing a
QuickTime movie file from the dialog box, you tell imovie what movie to read in when the
patch is loaded. imovie responds to various control messages, most notably start and stop,
which are the only messages we use in this example.

Tutorial 43 Graphics in a Patcher

234

• Stop the movie by returning the mod wheel to its zero position. Double-click on the
patcher playmovie object to see how the movie is being controlled.

Contents of the patcher playmovie object

A togedge object is used to detect changes in the zero and non-zero status of the mod
wheel. It filters out the numerous non-zero numbers the mod wheel might generate, and
reacts only to a change in its zero/non-zero status. It starts the movie and uses the metro
to rewind it to time 0 every 467 milliseconds. 467 milliseconds = 14/30 second (14 frames at
30fps). Setting the imovie object’s time location with a number while the movie is playing,
as is done here, causes the movie to continue playing from that point.

The control messages are sent to imovie via a send and receive pair. The r toimovie object is
hidden in the main patch.

Drawing with the lcd Object

In Tutorial 42 you learned how to draw colored shapes with sprites in a graphics window.
The lcd object lets you paint shapes, lines, and text in a Patcher window, not with sprites
but with commands. The principles of specifying the colors and coordinates of the shapes
are very similar in these two cases.

• Close the subpatch window [playmovie], and double-click on the patcher concentrics
object to see its contents. Play the low C on your keyboard (key 36) once to set the
[concentrics] subpatch into action.

The note toggles a metro, which increments a counter cycling from 0 to 100 about every
two seconds. The numbers from the counter are used to calculate the color and
coordinates of concentric circles to be painted with the PaintOval message to lcd.

Tutorial 43 Graphics in a Patcher

235

Let’s examine how to calculate the coordinates for these concentric circles which are
precisely centered within the lcd. This particular lcd object has been sized to be 160 pixels
wide by 120 pixels high. A little trigonometry reveals to us that the distance from the
center of this lcd to one of its corners is equivalent to 100 pixels, so the entire lcd can be
circumscribed by a circle with a radius of 100.

Since we know that the dimensions of the lcd are 160x120, we can easily calculate that the
center point is at the coordinates “80, 60” relative to the left top corner of the lcd. We can
then calculate that a perfectly centered circle with a radius of 100 would be bounded by a
square with the coordinates -20, -40, 180, 160.

So, to create a progression of diminishing concentric circles, we want the coordinates of
the circles’ bounding square to progress from -20, -40, 180, 160 (a circle of radius 100) to
80,†60,†80,†60 (a circle of radius 0) as the counter progresses from 0 to 100.

The calculated coordinates are packed as a list, the word PaintOval is prepended to that list,
and the entire message is sent to lcd via s tolcd and r tolcd (hidden in the main patch).

The color with which the lcd will paint is specified by the word color followed by a number
from 0 to 255. If a color number greater than 255 is received, it is automatically “wrapped
around” with a modulus operation to keep it in the correct range. This modulus feature is
taken advantage of in the [concentrics] patch. The numbers from the left outlet of counter are

Tutorial 43 Graphics in a Patcher

236

multiplied by the carry count from its right outlet (the number of times the counter has
reached its maximum). The result is that as each circle is painted, the lcd object’s pen
color is incremented first by 1’s, then by 2’s, then by 3’s, and so on. Even though these
numbers quickly exceed the range of acceptable colors, lcd keeps them within range
automatically. The fact that the color value is always being incremented by a different
amount makes the color pattern of the circles constantly change.

Drawing a Chaotic Image

• To see another example of drawing in lcd, play notes on your keyboard and/or move
the pitchbend wheel.

The MIDI notes and pitchbends draw lines in the lcd. As you draw more and more lines,
you will notice that they are filling in an isosceles triangle in an unpredictable but fairly
coherent pattern. Each line segment is drawn by moving the pen exactly half the distance
from its current position towards a randomly chosen corner of the triangle. This is one of
many interesting algorithmic patterns proposed by the mathematician Waclaw
Sierpinski.

• Close the [concentrics] window and double-click on the patcher Sierpinski object to open
it.

The note-on messages and speed-limited pitchbend messages are converted to bang
messages with a b object (shorthand for bangbang), and trigger one of three random
numbers which designate the coordinates of the corners of an isosceles triangle.

Tutorial 43 Graphics in a Patcher

237

The current pen coordinates are subtracted from the coordinates of the chosen corner,
and that distance is divided by 2 to determine the length of the line segment. The length is
added to the current pen location to determine the endpoint of the line segment. A line is
drawn from the current location to that endpoint, and the endpoint is stored as the new
“current location”.

The random number is also used to designate a color for the lcd object’s pen, so each line
is one of three colors, depending on which corner of the triangle it is drawing toward.
When the note 96 (the highest C on the keyboard) is received, the contents of the lcd are
erased with a clear message and three new colors are chosen by putting a new random
number into the right inlet of the + object.

Displaying and Hiding Text

It is possible to display changing text messages that don’t seem to be contained in Max
objects, by using a containing object that has no borders.

Tutorial 43 Graphics in a Patcher

238

One method is to display messages in a menu object that is in Label mode. A menu is put
into Label mode by sending it the message mode 3, or by selecting it and choosing Get
Info… from the Object menu and setting its mode to Label. Once this has been done, the
menu displays no borders and does not respond to the mouse. Sending the menu an item
number displays a new text message, and if you leave an empty item in the menu you can
hide it entirely by sending it the number of that item. There are actually three such menu
objects in the lower left corner of the Tutorial patch.

• If you have not already done so, close the [Sierpinski] window. Click on the button at
the right edge of the Patcher window.

The button triggers numbers and sends them (via hidden send and receive objects) to the
borderless menu objects in the lower left corner.

Window into a Subpatch

The button certainly appears to be in the Patcher window, but it is actually part of a
subpatch contained inside a bpatcher object. A bpatcher is like a window into a subpatch.
You can load any previously saved patch into a bpatcher object, and its contents are then
visible through the bpatcher. You can resize the bpatcher to control just how much of the
subpatch is visible, and user interface objects inside the bpatcher—such as the button in
this example—respond to the mouse just as if they were in the main patch.

• Unlock the Patcher window and you will see that it contains two bpatcher objects, one
that contains the button and a long thin one at the top of the window that (apparently)
contains nothing.

Not only can you control how much of the subpatch is visible by resizing the bpatcher, you
can also control what portion of the subpatch shows through it. Holding down the Shift
and Command keys on Macintosh or Shift and Control keys on Windows while dragging
on a bpatcher moves the subpatch around within it, allowing you to offset the subpatch’s
position. The amount of the offset shows up in the Assistance portion of the main Patcher
window.

• Lock the Patcher window and hold down the Shift and Command keys on Macintosh
or the Alt and Control keys on Windows as you drag on the button to move it around
within the bpatcher. Notice the coordinate information shown in the Assistance area.

Tutorial 43 Graphics in a Patcher

239

You can even make the subpatch inside the bpatcher reposition itself, by sending an offset
message to a thispatcher object inside the subpatch. An offset message consists of the word
offset followed by two numbers representing the number of pixels to offset the subpatch
horizontally and vertically. So, by carefully designing the patch you want to use as a
bpatcher subpatch, by carefully sizing your bpatcher object, and by sending the proper offset
messages to a thispatcher object in the bpatcher subpatch, you can cause an entirely
different image to show through the visible portion of the bpatcher.

In the following example, different objects in the subpatch shown on the left can be
windowed inside a carefully sized bpatcher by sending the correct offset messages, as shown
on the right

The contents of this subpatch... ...can be windowed three different ways
inside a single bpatcher in the main

patch.

This is the most obvious use of the offset message to a thispatcher object in a bpatcher.
However, as with any image that is positioned by specifying its pixel coordinates, the
contents of a bpatcher can be animated with a continuous stream of different positioning
messages.

Animating a bpatcher

• To see a demonstration of an animated bpatcher, click on the words Roll Credits in the
lower left corner of the window.

The use of offset messages to a thispatcher object in a bpatcher is another method of
displaying and hiding different text messages. In this case, the message box containing the
words Roll Credits is connected by a hidden patch cord to the inlet of the bpatcher, and its
output triggers a progression of different offset messages, causing the appearance of
scrolling text.

Tutorial 43 Graphics in a Patcher

240

• To see the contents of the scrolling text bpatcher, open the file named scrollingtext in
the Max Tutorial folder and unlock it.

When a message is received in the inlet of a bpatcher, it is converted to a bang by the b
object, and triggers a line object which sends out a stream of numbers progressing from
450 to -450 over the course of ten seconds. The number is used as the horizontal
coordinate—with the number -70 appended as the vertical coordinate and with the word
offset prepended—in an offset message to thispatcher.

The other bpatcher, containing the button, is just for fun, to demonstrate an extreme
example of animating the contents of a bpatcher. It also provides an opportunity to
introduce some new useful objects.

• Play the high C on your keyboard (key 96) once to trigger the animation of a
bouncing button. If the animation is extremely jerky or you don’t hear any sound,
check to make sure that the Overdrive option is disabled and the computer’s output
sound is turned on in the Sound control panel.

Although it appears that the button is moving, you know by now that the effect is actually
being achieved by continuously changing the offset of the subpatch inside the bpatcher.

• To see how this is achieved, first double-click on the patcher bouncing object to see its
contents.

Contents of the patcher bouncing object

Tutorial 43 Graphics in a Patcher

241

When a note-on from key 96 is received, it turns on a metro which causes a counter to send
out numbers from 0 to 310 at a rate of 50 numbers per second.

These numbers are used to calculate the horizontal and vertical offset of the bpatcher
subpatch, which gets sent to a thispatcher object in the bpatcher via the s tobpatcher2 object.

The rather complicated equation in the expr object calculates the vertical offset values,
using a cosine wave of decreasing amplitude and increasing frequency. Since a cosine
wave can represent harmonic physical motion, the absolute value of this diminishing
cosine wave is used to imitate a hard bouncing object being affected by gravity.

The value of the cosine wave over the course of time is calculated as the sine of: 2� (6.2832,
a complete 360˚ arc) times an increasing frequency ($f1/77.5+1, progressing from 1Hz to
5Hz) times “time” ($f1/310., with “time” being considered the progression of input
numbers from 0 to 310) plus a phase offset of �/ 2 (1.5708, a 90˚ phase offset to change the
sine wave into a cosine wave). The amplitude of that cosine wave is scaled by a
continuously changing amplitude: (310.-$f1)/310.*88. The entire result is converted to an int
and its absolute value is used. The multiplication by -1 at the beginning of the equation is
there because we need to move the contents of the bpatcher with a vertical pixel value
between -88 and 0 in order to give the appearance of the button coming to rest at a 0
vertical offset.

Tutorial 43 Graphics in a Patcher

242

Accessing Text Messages

• Close the [bouncing] window. Open the bouncingbutton file in the Max Tutorial
folder and unlock the window to see the contents of the bouncing button bpatcher.

You can see the r objects that receive messages from inside the patcher bouncing object. The
color messages for the button are received by the r tobpatcher1 object, and the offset messages
are received by the r tobpatcher2 object. What appears to be a comment next to the button is
actually a menu in Label mode. The menu contains text in menu item 0, and nothing in
menu item 1. Thus, the text can be hidden by the number 1 being received from the
patcher bouncing object via the r tobpatcher3 object.

You’ve already seen that when you click on the button, text is displayed in the menu
objects in the lower left corner of the Tutorial patch. In the following example you can see
how that’s accomplished inside the bpatcher.

The urn object is very similar to random; when it receives a bang it outputs a random
number from 0 to the number one less than its argument. Unlike random, however, urn
keeps track of the numbers it has sent out, and will not output the same number twice.
The urn object is used any time you want to generate all the elements of a set without
repetition. In this case, it outputs numbers from 0 to 11, which have 1 added to them to
select items 1 to 12 of the menu objects. Since all three menu objects receive the same
number, their messages can be correlated and be guaranteed to be displayed together.

When urn has output all the possible numbers in its range, it does not send any more
numbers, and instead sends a bang out its right outlet. This bang can be used to send a clear
message back to urn, clearing its memory, preparing it to output numbers once again. In

Tutorial 43 Graphics in a Patcher

243

this example, urn always clears its own list and re-bangs itself whenever it has run out of
numbers to send; so it always sends out a number, but it minimizes the repetitions that
occur.

Summary

There are several ways to create animation within a Patcher window. You can play a
QuickTime movie in a Patcher window with the imovie object; you can paint colored lines,
shapes, and text in a Patcher window with QuickDraw-like messages to an lcd object; and
you can make text messages appear, change, or disappear in the Patcher window by
sending a menu item number to a borderless menu object.

Graphic images can be animated algorithmically using controlled randomness, fractal
formulae, or any formula into which you send a progression of different input values to
calculate the coordinates of graphic objects, lines, or shapes.

The bpatcher object allows you to create a window into the contents of a subpatch. User
interface objects that are visible in a bpatcher can respond to the mouse just as if they were
in the main patch. You can display different parts of the subpatch in a single bpatcher box
by sending an offset message to a thispatcher object inside the subpatch. By sending a
progressive series of offset values to a bpatcher, you can scroll text or give the impression of
moving objects.

The urn object functions like random—when it receives a bang it outputs a random number
within a specified range—but it keeps track of the numbers it has sent out, and does not
send out the same number twice until its memory has been cleared. Thus, urn is useful for
generating a random, non-repeating sequence of any set of messages or events.

See Also

bpatcher Embed a visible subpatch inside a box
Graphics (Max Topics) Overview of graphics windows and objects
imovie Play a QuickTime movie in a Patcher window
lcd Draw QuickDraw graphics in a Patcher window
menu Pop-up menu, to display and send commands
urn Generate random numbers without duplicates
Tutorial 42 Graphics

244

Tutorial 44: Sequencing with detonate

Extended Sequencing Capabilities

In this chapter we demonstrate the use of the detonate object for sequencing MIDI note
events, and we show how detonate can be used to implement more advanced sequencing
capabilities such as non-realtime “step” recording, continuously variable playback tempo,
and triggering individual notes on command. Because this is a fairly complex patch, it is
also instructive as an example of how to organize a maze of communications between
objects by encapsulating the various tasks into separate subpatches.

The functions of this patch are:

1. to record incoming MIDI notes

2. to play them back while varying the tempo, or

3. to step through the recorded sequence one note at a time by triggering each note from
the computer keyboard or the MIDI keyboard.

You can switch from one function to another by clicking on buttons onscreen (actually
message boxes) or by typing key commands on the computer’s keyboard.

Using the Patch

Before examining the construction of this patch, you may want to use it to get an idea of
what it does.

• Click on the Record message box—or type r—and play a melody or some arpeggiated
chords on your MIDI keyboard for at least fifteen seconds or so.

• When you have finished playing, you can hear your performance played back by
clicking on the Play message box or typing p. You can vary the tempo of the
playback—from 1/2 to 2 times the original tempo—by dragging on the horizontal
slider in the [tempo] window.

• Return the tempo to 1, then click on the Step message or type s. You can now play each
of the recorded notes one at a time by playing any key on your MIDI keyboard or by
typing the Enter or Return keys on Macintosh or the Enter key on Windows on your
computer keyboard.

Tutorial 44 Sequencing with detonate

245

• When you have finished, click Off or type o. You can edit the recorded notes by
double-clicking on the detonate object.

Encapsulation of Tasks

To keep this patch neat and comprehensible, it was necessary to think of it in terms of the
different tasks to be performed—as outlined above—and then try to enclose each task in
its own subpatch. So, there is one patcher for capturing key commands from the
computer’s keyboard, another for actually performing the commands, one for getting
MIDI input and sending it to detonate, one for sending the data from detonate to the MIDI
output, and one for varying the tempo of the notes played by detonate.

A subpatch such as p commands needs to communicate to all of the other subpatches, which
would cause a tangled net of patch cords. So we had to decide which are the direct
communications to be made via patch cords with inlets and outlets—commands coming
in from the message boxes that the user clicks on, and going out to the detonate
object—and which are the indirect ones to be made remotely via send and receive
objects—such as supplying values to other subpatches or controlling the flow of MIDI
messages.

Tutorial 44 Sequencing with detonate

246

Receiving Commands from the User

Most patches require some kind of controlling command input from the user. In this case
we want to choose one of three mutually exclusive actions—record, play, and step through
the recorded notes—plus a fourth action, off. This is accomplished easily enough with
four clickable commands in message boxes.

For quick access to the commands, we can make keyboard equivalents by looking for
specific ASCII values and banging the message boxes when the keys are pressed. Detecting
key presses on the computer’s keyboard has already been demonstrated in Tutorial 20.
The key detection is very simple, and is a very specific task, so it is easily encapsulated in
the subpatch p keycommands, the outlets of which are connected directly to the command
message boxes.

• Double-click on the p keycommands object to see its contents.

In addition to the mnemonic key commands o, r, p, and s for triggering the message boxes,
the Escape key is used as a synonym for off, and the Return and Enter keys on Macintosh
or the Enter kay on Windows can be used to step through the score. If the number 1 has
been received from the r keysteps object, then Return or Enter on Macintosh or Enter on
Windows will trigger a next message in another subpatch via the s bangnext object.

The Central Command Post

Analysis of the different functions of the patch revealed that the user interface could
really be very simple: four clickable commands with keyboard equivalents. However, each
of those commands must actually trigger a variety of actions throughout the whole patch.

Tutorial 44 Sequencing with detonate

247

The p commands subpatch is for ensuring that all of those actions are carried out in the
proper order when a command is received.

• Close the [keycommands] window and double-click on the p commands object to see its
contents.

The output of each of the clickable message boxes comes in the one of the inlets of p
commands and is converted to a bang with a b 1 object, and that bang triggers everything that
needs to happen for each command.

Each new command that comes in could potentially cause detonate to stop recording
while a note is in the process of being recorded, so the first thing each command does is
bang a flush object in the p input subpatch to turn off any incoming MIDI notes.

Although it’s not strictly necessary, each incoming command also stops detonate before
giving it a new command, and stops any delayed bang messages that may exist in the p
output subpatch if detonate were playing.

Then finally each of the incoming commands opens or closes the appropriate gate objects
in the p input and p output subpatches, and sends the appropriate command to detonate. So,
for example, an Off command will:

1. flush any held notes in the p input subpatch

2. stop any delayed bang messages in the p output subpatch

3. stop detonate

Tutorial 44 Sequencing with detonate

248

4. send 0 to the p keycommands subpatch so that the Return and Enter keys will no longer
have any effect

5. close a gate in the p input subpatch to stop incoming MIDI notes

6. flush any held notes in the p output subpatch.

MIDI Input to detonate

• Close the [commands] window, and double-click on the p input object.

A gate object is used to route the incoming MIDI pitch numbers to the proper place.
When detonate is stopped or playing, we want it to ignore incoming MIDI information, so
the gate is closed. When recording, the pitches are sent out the left outlet of the gate, and
when stepping through notes the pitches are sent out the right outlet of gate.

When detonate is recording, we need to send it not only the note information, but also the
time elapsed since the previous message. Therefore, we use the sel 1 object to start a timer

Tutorial 44 Sequencing with detonate

249

when recording is turned on. During recording, the pitch value goes directly to detonate,
and also bangs the timer to report the elapsed time; then it restarts the timer for the next
incoming note message. The time reported by timer is used as the delta time, and is
combined with the pitch, velocity, and channel numbers to record a note event in
detonate.

When the Step command is chosen, the number 2 is sent to gate to open its right outlet.
Instead of going to the timer and to detonate, the pitch numbers go to stripnote. The
stripnote object filters out the note-off messages, and only the note-on pitches are used to
trigger a next message to detonate (back in the p commands subpatch).

Note Events from detonate

• Close the [input] window, and double-click on the p commands object again.

When the user clicks on Play, it sends 1 from the s delaygate object to the r delaygate object in
p output, and then it sends a start message to detonate.

• To see where those messages will go, close the [commands] window, and double-click
on the p output object to open it.

The number 1 from r delaygate opens a gate to let the numbers received in the left inlet go
through. Then the start message sent to detonate causes it to report the first delta time,

Tutorial 44 Sequencing with detonate

250

which comes in the left inlet of p output and passes through the gate. The number goes to
the right inlet of delay and is used as the delay time before banging a next message to
detonate to trigger the event information for the first note. As detonate sends out event
information in response to the next message, it also sends out the delta time of the next
note event, so the process continues until detonate is stopped or runs out of notes.

The other items of event information that come from detonate are pitch, note-on velocity,
duration, and channel. Using makenote to supply note-off messages seems reasonable, but
in this case doing so would unfortunately separate the channel information from the
pitch and velocity, making it possible that note-offs could be transmitted on the wrong
channel (if, for example, a note message on channel 2 occurs just before the note-off for a
note on channel 1).

Therefore, it’s preferable to create note-off messages by using a pipe object to delay the
pitch and channel information together, which will send those values out with a velocity
of 0 after waiting for the number of milliseconds specified by the duration value. So in this
patch the note-on message goes directly to noteout, and pipe supplies a later note-off
message on the same key and channel.

Modifying the Playback Tempo

You have no doubt noticed that the duration values and the delta time values each pass
through a * 1. object. As they go through, they are multiplied by a scaling factor received
from the r tempofactor objects. This tempo scaling factor is produced in the p tempo
subpatch.

Tutorial 44 Sequencing with detonate

251

• To see how the scaling factor is produced, close the [output] window and bring the
[tempo] window to the foreground.

• Since the [tempo] window contains hidden objects, you’ll need to unlock it and click
on the zoom box in the right corner of the title bar to see its contents (or you can
simply consult the picture of it shown here).

The contents of the p tempo subpatch

We decided to use the hslider object to permit the user to give tempo scaling values from
half the original tempo to twice the original tempo (from 0.5 to 2.0). This presents a small
problem, because the factor we want to use is a multiplier, while hslider is on an additive
(linearly increasing) scale. However, if we recognize that 0.5 = 2-1, 1 = 20, and 2.0 = 21, then
we see that we can use the hslider to provide the exponent ranging from -1 to +1. By
selecting the hslider and choosing Get Info... from the Object menu, we set the Slider
Range to 201 values, and the Offset to -100, so that it sends out values from -100 to +100. In
the expr object, we divide that number by 100., and use the result as the exponent in the
pow() function, to get 2x.

As a matter of fact, though, in order to double the tempo, we need to halve the delta times
and durations; conversely, to halve the tempo we need to double the delta times and
durations. This means that we want to show the user numbers ranging from 0.5 up to 2.0,
but actually send numbers ranging from 2.0 down to 0.5 to r tempofactor in the p output
subpatch. The value we want to send is the reciprocal of the value we want to show, so we
actually send one over the tempo factor.

Although the seq object permits playback at different constant tempi, the use of detonate
shown here is the best way to vary continuously the playback tempo of a MIDI file or
other stored sequence of note events.

Tutorial 44 Sequencing with detonate

252

Non-Realtime Recording

The rhythm of a sequence recorded in detonate is determined by the event starting times
given to detonate (that is, the delta time received for each note event), rather than by the
actual time detonate receives the events. For this reason, a sequence can be recorded over
any period of time, or even in a single instant. This is demonstrated in the subpatch p
‘Another Example’, which is a completely separate program from the rest of this patch.

• Double-click on the p ‘Another Example’ object to open it.

Although some of the arithmetic in the expr objects may appear daunting, the basic
operation of this patch is extremely simple. When you click on the button:

1. A record message is sent to detonate.

2. uzi sends out 1000 numbers ascending from 1 to 1000 (effectively from 0 to 999, since
the numbers go immediately to a - 1 object).

3. Each of those numbers is used to calculate the different parameters of a note event.

4. When uzi is done, a start message is sent to detonate, followed immediately by a next
message to send out the first note event.

5. The event parameters are converted to MIDI messages by makenote and noteout (and
ctlout for panning messages), and the delta time is used to determine when the next
note should be triggered.

In a single tick of Max’s clock, a melody approximately 78 seconds long is composed and
recorded.

Tutorial 44 Sequencing with detonate

253

Each of the event parameters is calculated according to a unique formula describing a
particular curve from the beginning to the end of the melody’s duration.

When these individual curves of progression for each of the parameters are combined,
they create a constantly changing yet still quite predictable melody. Panning moves
according to 41/4 cycles of a cosine wave, beginning panned to one side, then moving
slowly from side to side and ending in the center of the stereo field. Velocity is random
within a restricted range that begins from 1-32 and increases according to an exponential
curve ending in the range 96-127. Pitch moves in 480 cycles of a sinusoidal wave centered
around key 66, beginning with an amplitude of 0 semitones and ending with an
amplitude of ±30 semitones, from 36 to 96. Delta time between notes changes according
to 8 exponential curves of acceleration, repeatedly accelerating from 5 notes per second to
50 notes per second. Duration is always 5 times as long as the delta time of the next note,
so that even the fastest notes last at least 100 milliseconds.

• Click on the button to compose, record, and play the melody.

Summary

The detonate object is useful for recording and playing sequences of notes, and can read
and write standard MIDI files. It is also useful for less commonplace sequencing tasks
such as non-realtime recording, continuously variable playback speed, and playing back
the recorded notes in a new rhythm.

To record MIDI note messages in detonate, a timer should be used to report the time
elapsed between messages, which detonate will record as the delta time parameter of each
note event. On playback, the delta time should be used to determine how long to wait
before playing the next note. Multiplying the delta times and durations by some number
other than 1 changes the tempo of the playback. When supplying note-offs for notes on
different channels, pipe can be a useful substitute for makenote.

Tutorial 44 Sequencing with detonate

254

See Also

detonate Graphic score of note events
Detonate (Max Topics) Graphic editing of a MIDI sequence
Sequencing (Max Topics) Recording and playing back MIDI performances

255

Tutorial 45: Designing the User Interface

Making an Application for Others

When you have written an interesting Max program, you may want to give it to other
people to use. If your program consists of many different files—your own objects,
graphics files, etc.—you will probably want to use the Save As Collective... command in
the File menu to save all the necessary files together as a single collective. You can even
save your collective as a standalone application for people who don’t have Max or
Max/MSP Runtime. For more information about saving your program as a collective or
standalone application, see the chapter on Collectives in the Topics section of this manual.

If you’re going to give your program to others to use, you will probably also want to
spend some time planning and designing the user interface, to make it as well-organized,
attractive, intuitive, clear, and user-friendly as possible. This chapter presents a complete
application written in Max, and discusses a variety of issues to consider when planning
your application and designing its user interface.

Because this patch is considerably more complex than any of the other examples in this
Tutorial, we won’t go into extensive detail trying to explain how it works. We’ll leave that
for you to investigate on your own if you’re curious. Rather, we’ll try to point out some of
the visual design decisions that were made and some ways of implementing certain user
interface features. This chapter will show how to plan the layout of your program, how to
modify windows and the menu bar to your liking, how to add graphics to customize the
look of your program, and how to decide the best way to present information to, and get
input from, the user.

The Note Modifier Program

The example application, called Note Modifier, is a four-track router-channelizer-
transposer-inverter-randomizer-delayer of MIDI note messages. The four tracks of
modification work in parallel—separately and simultaneously—and can be turned on and
off individually. The actual modifications performed in each of the four tracks are in
series—the output of one goes into the input of the next—and can be turned on or
bypassed individually. In addition the program provides an onscreen imitation keyboard,
so that notes can be played with the mouse and fed into the Note Modifier.

Tutorial 45 Designing the User Interface

256

• To begin modifying MIDI notes, turn on one track by clicking on the Track A button.
(You can also turn the track on or off by choosing Track A from the Modify menu, or
by typing Command-1 on Macintosh or Control-1 on Macintosh.)

• Use the In and Out pop-up menus to choose the input port from which you wish to
receive the MIDI notes and the output port to which you wish to transmit the
modified notes. The pop- up menus should contain the list of devices from your
current MIDI setup.

• As long as a number box in the Track A window shows 0, that particular modification
will be bypassed and the note will be sent on unchanged. Drag on the number box
objects with the mouse (and/or click on the Inversion toggle) to set the desired
modifications. Then begin playing on your MIDI keyboard. Try different
combinations of modifications.

• If you want more streams of modified notes, turn on additional tracks and set
different values for the parameters of those tracks.

• By choosing Keyboard from the Modify menu, you can use an onscreen imitation
MIDI keyboard which sends its notes to the Note Modifier tracks as well as directly to
the output port you select. This allows you to use the application even when you don’t
have a MIDI keyboard available.

The Note Modifier program is modeled after the PCL software originated by Richard
Teitelbaum and coded in 68000 assembly language by Mark Bernard in 1983 (see Richard
Teitelbaum, “The Digital Piano and the Patch Control Language,” The Proceedings of the
ICMC, Paris 1984), and later re-implemented in Max to Teitelbaum’s specifications by
Christopher Dobrian in 1990.

Tutorial 45 Designing the User Interface

257

Planning Your Application

In order to design a good program and a good interface, it pays to do some planning
before you begin programming, to make sure that you know a) what things you want the
program to do, and how you plan to do them, b) what information you’ll need to give the
user, and how you plan to display it, and c) what information you need to get from the
user and how the user can best provide it. Once we decide what our application will do
(four tracks of MIDI routing, channelizing, etc.) and how that can be accomplished, the
next thing to consider is “What do we need to tell the user?”

The user needs to be told which tracks are currently turned on (an on/off indication for
each track), and what the settings are for each track (a set of parameter names and their
values). Four tracks, with eight modifiable parameters on each track plus an on/off
indicator, makes 36 different items of information we need to show the user, plus labels to
identify the items. Some information is numerical, some is a simple on/off indication, and
some (the port names and labels) is text. All of it will potentially need to be visible at one
time, and there should be a way for the user to change any of the values at any time.

All of the above considerations will affect your decisions of screen layout, which user
interface objects to use, and what combination of typing and mousing—menus, dialogs,
pop-up menus, buttons, toggles, sliders, etc.—is best for getting information from the
user. You can be guided in these decisions by observing other effective applications, and
by considering any real-world models that might provide a good example.

Designing Your Own Buttons

As was demonstrated in Tutorial 19, you are not restricted to using Max’s button object or
message box for responding to mouse clicks. You can design your own button in a
painting or drawing program, place it in a Patcher window—with the fpic object or by
copying it and using the Paste Picture command in the Edit menu—and then cover it
with a transparent ubutton. That’s the method used for the track on/off buttons in this
program. We drew a picture of four buttons, used fpic to display the picture, and placed
four ubutton objects on top of it. To be sure that the fpic is behind the transparent ubutton
objects—so that the mouse clicks will go to the ubutton objects and not the fpic—we simply
selected the fpic and chose Send to Back from the Object menu.

If you select a ubutton and choose Get Info... from the Object menu, you will see that it
has an optional setting called Toggle Mode. When a ubutton is in Toggle Mode, the first
bang or mouse click it receives highlights it and sends bang out its right outlet. The next
bang or mouse click unhighlights it and sends bang out the left outlet. This makes it very
versatile as an on/off switch and an on/off indicator. When the display monitor is black

Tutorial 45 Designing the User Interface

258

and white, ubutton reverses the color of whatever picture is underneath it. When the
monitor is color, ubutton reverses only the black or white portions of the picture.

For this application we chose to use solid dark colors rather than light colors or gradients,
so that they would work well on any monitor. We also chose four different basic colors,
one for each of the four tracks, so that the color scheme plays a functional role as well as a
decorative one, helping the eye separate the windows.

Another issue that involves color versus black and white is the use of anti-aliasing for text
and graphics. Anti-aliased text, which you can produce in most painting programs, looks
much better onscreen than plain text, but on a black and white monitor it can look very
jagged and unattractive. Therefore, in most cases it’s wise to choose a font, size, and style
that is clearly legible without anti-aliasing— especially when the text is small. Of course,
the majority of people using this version of Max have a color monitor, so you might
decide to design the look of your program with color users in mind and accommodate
people with black and white monitors to whatever extent you see fit.

Anti-aliased text looks better on a greyscale or color monitor than on a black and white
monitor.

Combining Max Objects and Graphics

Once you have decided what objects you want to show to the user, and have laid them out
the way you want them, you can copy them from your Max patch, paste them into a
drawing or painting program, and then draw around them to make a picture that seems
to include the Max objects. If your graphics program supports multiple layers—as does
Adobe Photoshop, for instance—you can put the Max objects in a separate layer from the
rest of your picture. Once your picture is the way you want it, delete the Max objects from
the picture, copy the rest, and paste it into your Max patch. It will fit perfectly with the
original Max objects that you copied in the first place.

Tutorial 45 Designing the User Interface

259

The track windows and the keyboard window of this application were done this way.

This picture was painted around some Max objects, leaving perfectly sized holes for them in
Max

Window Size and Placement

You can open and close the window of a subpatch automatically with the pcontrol object,
and you can open, close, move, resize, and alter the appearance of a subpatch window
with thispatcher. A thispatcher object sends messages to the Patcher that contains it. Each of
the windows in this application contains a hidden thispatcher object to set the window up
with exactly the desired size, location, and characteristics. When the application is
opened, a loadbang object triggers the messages to each thispatcher to set up each window.

Set the characteristics, size, and location of a window with thispatcher

Tutorial 45 Designing the User Interface

260

The windows for the four tracks are four instances of the same subpatch, a separate file
called modtrack. Yet, each instance can have a unique picture and a unique window
placement because that information is supplied to the fpic object and the thispatcher object
as arguments to the modtrack object in the main patch.

Arguments to modtrack in the main patch... provide unique attributes for each modtrack
subpatch

Some caution is advised when changing windows with thispatcher. For example, it’s
possible to give window size coordinates that are entirely outside the bounds of your
screen, making it invisible to you (but still open). Also, once you hide the title bar you can
no longer drag the window to a new location, and once you hide the scroll bars you may
be unable to get to the proper place in the patch to make some necessary changes. A good
safeguard against these problems is to connect a receive object to the inlet of thispatcher so
that you can send it messages from another Patcher if necessary.

A message in one patch...can change the window characteristics of another patch

Customizing the Menu Bar

The standard way for a user to give commands to an application is by choosing a
command from the menu bar. In our application we want menu commands for turning
each track on or off, for opening and closing the keyboard window, and for sending an all
notes off message out on all channels in case there are stuck notes on the synth.

Tutorial 45 Designing the User Interface

261

With the menubar object you can add your own menus and commands to the menu bar.
The argument to menubar tells it how many menus you want there to be. (There must be
four menus. These are the Help, File, Edit, and Windows menus.) Then you type in a
script that explains to menubar where you want it to put additional menus and commands.
(See menubar in the Max Reference Manual for details on writing the script.) In our case,
we want to change the first item in the Help menu from About Max... to About Note
Modifier..., and we want to add a new menu called Modify that contains the new
commands we want.

The script is as follows:

#X about About Note Modifier...;
#X menutitle 5 Modify;
#X item 5 1 Track A/1;
#X item 5 2 Track B/2;
#X item 5 3 Track C/3;
#X item 5 4 Track D/4;
#X item 5 5 -;
#X item 5 6 Keyboard/K;
#X item 5 7 -;
#X item 5 8 Panic/P;
#X end;

The / character is special, indicating that the character the follows it should be the
keyboard shortcut associated with that menu item (Command + <key> on Macintosh or
Ctrl + <key> on Windows). The - character is also special, indicating that a gray line
should be substituted for an actual menu item at that point in the menu, which is useful
for dividing the menu into sections.

Once our menu bar is in place, we have three ways to turn tracks on or off: a button, a
menu command, and a key command. This introduces a bit more complexity to our
programming task, however, because each of the three methods needs to: highlight or
unhighlight the button, check or uncheck the menu item, open or close the track window,
and enable or disable MIDI in that track window.

• To see how this is done, you’ll have to resort to a trick to see the contents of the main
patch. Close the 45. Note Modifier window, then re-open it and hold down the
Command and Shift keys on Macintosh or Control and Shift keys on Windows as it is
opening. This will stop all loadbang objects from sending out their bang messages, and
will open the window without hiding the scroll bars and zoom box. Now you can
unlock the Patcher and enlarge the window to see how the menubar object triggers the

Tutorial 45 Designing the User Interface

262

ubutton objects, which in turn trigger all the other necessary actions for turning a track
on or off.

Changing Text Labels

When you want a text label to change in a patch, the menu object is a good substitute for a
comment. In the menu Inspector window, you can set the menu’s Mode to Label. In this
mode, menu appears as a borderless text label that does not respond to a mouse click, very
much like a comment. Unlike with a comment, however, you can type in a series of different
text messages as menu items, and recall them by sending the item number in the inlet. In
this way, you can cause a label to change to fit the number it is describing.

For example, in the track window, when the channel of the MIDI note is to be left
unchanged, the Channelization value is at 0. As soon as a number from 1 to 16 is entered
as the Channelization value, though, the label changes to Out Channel, to show that that
is the new output channel. When the value is changed back to 0, the label changes back to
Channelization to show that there is currently no channelization occurring.

Changing the value in the number box changes the label

Another use of menu for changing text can be found in the About Note Modifier...
screen.

• Choose About Note Modifier... from the Apple or Help menus.

The text “Click anywhere to continue.” blinks on and off. This is really just a menu in
Label mode that is being switched between two menu items. One item contains the text,
and the other is empty. When the window is brought to the front, an active object starts a
metro which toggles the menu back and forth between the two items once each second.

Blinking text by switching between items of a menu in Label mode

Tutorial 45 Designing the User Interface

263

Input and Output Ports

Each of the track windows contains pop-up menus for setting the desired input and
output ports for MIDI note messages. These pop-up menus contain all the devices in the
current MIDI setup, as retrieved by the midiinfo object, and they are used to reset the port
of notein, noteout and ctlout objects.

midiinfo reports all devices in the current MIDI setup

When the patch is loaded, loadbang sends a number in the right inlet of one midiinfo object
to report the input devices, and sends a bang to the left inlet of another midiinfo object to
report the output devices. When midiinfo gets one of these inputs, it first sends out a clear
message to empty the menu, and then it sends out a series of append messages to add each
of the appropriate device names to the menu. This configuration of objects is the way to
get information about the current MIDI setup into a patch. The desired port can then be
chosen from the pop-up menu.

When the Panic command is chosen from the Modify menu, Command-P on Macintosh
or Control-P on Windows is typed, a bang is sent to the uzi 16 object in each track, which
proceeds to send out an all notes off message (continuous controller 123 with a value of 0)
on all 16 channels to the output port of that track. This is the best way to implement a
quick panic command for stopping stuck notes on the synth.

Summary

With some attention to programming and designing the user interface, a Max patch can
be made into a finished application for distribution to others. The menu bar can be
customized with new menus and commands using the menubar object. The windows of all

Tutorial 45 Designing the User Interface

264

constituent patches and subpatches can be sized, placed, and customized precisely and
automatically using the thispatcher object. New onscreen buttons can be designed in a
graphics program, placed in a patcher, and made clickable using the ubutton object. And
Max’s user interface objects can be nested in a picture that was designed in a graphics
program, making them look like part of the picture. You should choose the colors and
fonts in the graphics you design not only for attractiveness, but also for functionality and
clarity.

The picture in a patcher can be changed using pict messages to fpic. Text labels can be
changed by sending item numbers to a menu in Label mode. Device names in the current
MIDI setup can be obtained using the midiinfo object and placed in a menu object. The
names can then be sent to MIDI objects to change their port assignment.

See Also

fpic Display a picture from a graphics file
menubar Put up a custom menu bar
pcontrol Open and close subwindows within a patcher
thispatcher Send messages to a patcher
Tutorial 19 Screen aesthetics
Tutorial 43 Graphics in a patcher
Collectives (Max Topics) Grouping files to create a single application

265

Tutorial 46: Basic Scripting

Introduction

Max 4 offers a new way of working with objects and patchcords within a patcher:
scripting. Scripting permits you to perform numerous operations on Max objects by
sending simple text messages to the thispatcher object. Scripting commands are available
which create and delete objects and patchcords, send values to objects and change object
properties such as visibility, size or position. With scripting, Max programmers may
change objects, connections and patcher layout even when the Patcher window is locked.

Scripting might be useful for any number of purposes:

• Instantiating and deleting elements of a patcher as you need them.

• Creating, altering and deleting connections between objects.

• Replacing embedded objects, such as patchers inside a bpatcher object.

• Controlling the visual arrangement of patches. You can change object sizes and
arrangements, even in response to user input.

Give It A Name

In order for scripting to work, objects must have names. All scripting commands refer to
object names in order to properly assign actions to them. Names can be assigned in one
of several ways:

Tutorial 46 Basic Scripting

266

1. Select an object, then choose Name... from the Object menu. The Name Object
window will open:

The Name Object window

By default, Max objects do not have names, so <none> will appear in the Name Object
window when you first open it for an object. Type any non-reserved term into the
Name Object Inspector, and you've named the object (reserved terms include bang,
int, float and list—and errors may result if you use these names). Objects must have
unique names within a patcher —Max will warn you that a name is already in use if
you try to assign duplicate names to objects. Since this restriction only applies to
objects within a Patcher window, identically named objects inside duplicate
subpatchers or bpatcher objects are not a problem.

2. Create a new object with scripting: If you create an object using scripting, your new
object is given a name as part of the act of creating it. If the name you assign to an
object is already in use, the newly created object takes the name away from the object
that owns it.

3. Two scripting commands permit you to assign names to objects based on certain
criteria (script class and script nth). Please refer to the reference page for the thispatcher
object for more details about these commands.

To check whether an object is named, you can:

• Select the object and choose Name… from the Object menu. If the object is named,
the Name Object window will display it. Otherwise you'll see <none>.

Tutorial 46 Basic Scripting

267

• Select the object and, if possible, choose Get Info… from the Max menu. The name of
the object appears in the title bar of an object’s Inspector window.

Object name in its Inspector window's title bar

• Moving the cursor over an inlet or outlet of a named object will show the name of the
object in the Assistance field of the Patcher window, if Assistance is checked in the
Options menu.

Object name in Assistance

Basic Scripting

Scripting commands take the following form:

script <action> <arguments...>

Scripting commands are sent as messages to a thispatcher object contained inside the
Patcher window where you want something to happen. For instance, if you wanted to
move the number box named numberbox1 to the Patcher window coordinates (15, 27), the
scripting command to do so is script move numberbox1 15 27.

Tutorial 46 Basic Scripting

268

A before-and-after illustration is shown below:

Before sending the script move... message

After sending the script move... message

Making Connections

The scripting commands script connect and script disconnect are used to connect and disconnect
Max objects. They both use the same format:

script connect <outlet-variable-name> <outlet-index> <inlet-variable-name> <inlet-index>

Inlets and outlets are counted beginning at 0, from left to right. To disconnect objects, the
word connect is changed to disconnect:

script disconnect <outlet-variable-name> <outlet-index> <inlet-variable-name> <inlet-index>

Tutorial 46 Basic Scripting

269

Here's a before-and-after illustration of these messages.

Before sending the script connect message

In the above example, we have three number box objects, named John, Philip and Sousa.
The script connect messages to the right can be used to connect them to each other:

After sending the script connect message

To disconnect, we simply change the connect to disconnect:

After sending the script disconnect message

Tutorial 46 Basic Scripting

270

Sending Messages

You can use scripting to send values or messages to any named object. The command to
do this is:

script send <variable-name>

The script send message

This is particularly useful when working with large groups of named objects, where gate
or send objects might be unwieldy. Consider this patch:

Sending to many objects using gate and send

Tutorial 46 Basic Scripting

271

Compare the previous patch to this version:

Sending to many objects using script send

Not only does the second patch eliminate the gate and the send objects, but there is no
need for receive objects on the other end. The receiving number box objects simply have to
be named. In this case, each number box has a name starting with numbox and ending with a
number. These names can easily be generated by the sprintf object.

Another important use of the script send message is to send messages to objects that don't
have inlets, such as comment. For instance, in the following example, we repatch objects
and update the text of the comment located to the right of the number:

Changing comment text using scripting and repatching objects using script connect/ script
disconnect

You could also use this method to send offset messages to bpatcher objects that lack an
inlet.

Tutorial 46 Basic Scripting

272

Creating Objects

The most powerful feature of scripting is the ability to create new objects. The form of the
scripting command is:

script new <variable-name> <creation message>

As mentioned above, the <variable-name> field is a new object name, which is assigned to
the object being created.

The message part of script new is not straightforward. You want to send a message that is
identical to the format of Max text patch files. In order to understand this, let's take a look
at this simple patch in its text format:

A simple patch

(You can look at the text version of any Max patch by choosing Open As Text… from the
File menu.)

max v2; header information
#N vpatcher 40 55 299 300; patcher window definition
#P button 65 98 15 0; object definition for button object
#P number 94 75 35 10 0 0 0 22 0 0 0 221 221 221 222 222 222 0 0 0; object definition for number box

object
#P message 94 124 14 1441802 0; object definition for lower

message box
#P message 94 98 43 1441802 set \$1; object definition for upper

message box
#P newex 94 148 50 1441802 print a; object definition for print object
#P connect 3 0 1 0; patchcord
#P connect 4 0 2 0; patchcord
#P connect 1 0 2 0; patchcord
#P connect 2 0 0 0; patchcord
#P pop; create patcher window

Tutorial 46 Basic Scripting

273

In order to create any object in Max using scripting, use the portion of the object
definition (found in the Max text file) after the #P and before the semicolon.

To create the button object shown above, the scripting command is:

script new mybutton button 65 98 15 0

To create the number box shown above, the scripting command is:

script new mynumber number 94 75 35 10 0 0 0 22 0 0 0 221 221 221 222 222 222 0 0 0

Without going into great detail about each object, it's impossible to explain what all of the
numbers after the name (or class) of the object (button, number, message, etc.) mean. In
most cases, the first two numbers refer to the horizontal and vertical position relative to
the top left corner of the Patcher window. Note that if you have set a new Origin for your
Patcher window by choosing Set Origin from the View menu, the script new message
doesn't take it into account when placing objects at window coordinates.

The wide variation in object creation messages means that the most effective way to
create objects using scripting is often to simply create the object desired using
conventional means, and then copy the message used to recreate it from a saved patch
edited as text. Once you have the correct message for creating the object, try varying some
of the numbers to see what changes.

For reference when scanning Max text files, the most common object types are:

object type object
newex object box
message message box
number number box
flonum float number box
button button
toggle toggle
bpatcher bpatcher

Armed with this information, we can use object creation scripting to automate the task of
creating of multiple instances of a similar object. For instance, let's use the number box
object we saw above. The object definition string for the specific number box was

#P number 94 75 35 10 0 0 0 22 0 0 0 221 221 221 222 222 222 0 0 0;

Tutorial 46 Basic Scripting

274

We begin by stripping off the #P and the semicolon. We also know that the first and
second numbers following the word number refer to the object's horizontal and vertical
positions in the Patcher window. The following patch illustrates an approach to mass-
producing a flock of number box objects:

Making 15 number box objects automatically

Tutorial 46 Basic Scripting

275

Here it the result: an orderly series of 15 number box objects, uniquely named from
0mynumbox to 14mynumbox:

Why would you want to do this? Let’s expand the patch...

Making number box and receive objects

Now we've added the ability to create receive objects to the patch by copying the line that
created the print objects in the patch we examined above.In the case of the object box
definition, the first and second numbers after newex refer to the horizontal and vertical
coordinates, and the third number refers to the object's width. (The fourth number
represents the font and font size information.).

Tutorial 46 Basic Scripting

276

After executing the scripting commands, we obtain the result shown below:

The result

Now we'll use scripting to automate connecting the receive objects to the number box
objects.

Tutorial 46 Basic Scripting

277

Let's finish our patch and connect everything up:

Connecting number box objects to receive objects

This may seem like a lot of trouble to go to just to create and hook up 30 objects, but now
each object is uniquely named (with a patcher-specific scripting name, and, in the case of
the receive objects, a global symbolic name). This means we can continue to manipulate

Tutorial 46 Basic Scripting

278

them for the life of the patch. Using the basic technique shown above, we can create
thousands of connected objects from a prototype.

Deleting Objects

To delete objects, use the script delete message:

script delete <variable-name>

This example destroys everything we worked so hard to create above:

Deleting objects

Summary

Scripting is performed by sending messages beginning with the word script to the
thispatcher object. Objects must be given names in order to be scriptable. You can
perform a number of tasks with scripting, including creating objects, connecting them
together, sending messages, and, finally disconnecting and deleting them.

In the next Tutorial, we'll explore some more advanced uses of scripting including
replacing objects, moving them around, and hiding them.

279

Tutorial 47: Advanced Scripting

Replacing replace

Scripting allows you to replace objects in patches. To do this, you first delete an object,
then create a new object in its place and make all of the appropriate connections to and
from the new object. This feature is particularly useful when you need to replace
subpatchers and bpatcher objects within a patch where you need a part of the patch to use
an algorithm that can vary—a sort of “plug-in.” The previous method for replacing
bpatcher objects dynamically (using a replace message to a thispatcher object inside of a
bpatcher) has been replaced with scripting in Max 4, and offers the following
improvements:

• Control is assigned to the top-level of the patch, instead of depending on a
mechanism internal to a patch contained in the bpatcher.

• It's simple to repatch bpatcher objects once they are created, even if the new bpatcher
contains a different number of inlets or outlets.

To implement a replace feature, we need to take the following steps:

1. The original bpatcher object must be named. Any objects connected to it via inlets or
outlets should also be named.

2. To replace the object, we first delete it, using the script delete message.

3. Using the script new message, we then create a new bpatcher with the same object name
as the previous one that refers to a new patch file.

4. Finally, we reconnect objects to the inlets and outlets of the new bpatcher as necessary.

Let's begin with two simple patches, bpatch1 and bpatch2 that we'd like to use inside a
bpatcher:

Tutorial 47 Advanced Scripting

280

Our main patch looks like this, and already contains a bpatcher named mybpatcher
containing the bpatch1 patch:

example 2: ‘replace’ master patch

The Max text file for this patch looks like:

max v2;
#N vpatcher 31 53 416 384;
#P number 8 166 35 10 0 0 0 22 0 0 0 221 221 221 222 222 222 0 0 0;
#P objectname num_bottom;
#P number 78 49 35 10 0 0 0 22 0 0 0 221 221 221 222 222 222 0 0 0;
#P objectname num_topright;
#P number 8 49 35 10 0 0 0 22 0 0 0 221 221 221 222 222 222 0 0 0;
#P objectname num_topleft;
#P bpatcher 8 71 105 90 0 0 bpatch1 1;
#P objectname mybpatcher;
#P connect 1 0 0 0;
#P connect 0 0 3 0;
#P fasten 2 0 0 1 83 67 108 67;
#P pop;

In the text file listing above, items with names are immediately followed by a line starting
with #P objectname. This is a good way to determine exactly which object definition string
you want to grab, when you are looking at complicated Max text files. In this example, we
have four named objects, num_bottom, num_topright, num_topleft and mybpatcher.

The object definition string of bpatcher looks like this:

#P bpatcher <horizontal pos> <vertical pos> <width> <height> <h-offset> <v-offset> <patchname> <border
on/off [1/0]> <argument 1> <argument N...>

Tutorial 47 Advanced Scripting

281

When we create a new bpatcher object that contains a different patcher, we'll leave
everything the same except for the name. Our script sequence goes like this:

1. script delete mybpatcher

2. script new mybpatcher bpatcher 8 71 105 90 0 0 bpatch2 1

3. script connect num_topleft 0 mybpatcher 0

4. script connect num_topright 0 mybpatcher 1

5 script connect mybpatcher 0 num_bottom 0

A replaced and repatched bpatcher

Where to Put a Script

As the above example makes clear, even simple scripts can become rather long. Managing
your script text can be as challenging as writing it. If you find yourself routinely working
on long scripts, you might consider writing them inside of a coll object.

Tutorial 47 Advanced Scripting

282

Using the previous example as a model:

There are several advantages to this method:

• A coll object takes up virtually no screen space.

• You can save scripts to files, or read them in as necessary.

• You can manage multiple scripts inside of a single object.

Moving and Resizing Objects

Some of the most exciting features of scripting are the commands to dynamically move,
resize and hide elements of Max patches. Using these features, flexible interface designs
are straightforward to implement.

Tutorial 47 Advanced Scripting

283

The main scripting command for moving objects is:

script move <variable-name> <top> <left>

The horizontal and vertical coordinates refer to the pixel location of the top left corner of
the object inside the window.

To resize objects:

script size <variable-name> <horizontal size> <vertical size>

Again, values are in pixels. Consider the following patch:

Using the script move and script size messages

Tutorial 47 Advanced Scripting

284

Click on the large and small message box objects to trigger script commands to move and
resize the function object:

The result of sending the large message

Additional commands

script messages are available for advanced object moving operations. The command script
offset message permits you to specify a change in an object's location relative to its current
position:

script offset <variable-name> <delta-x> <delta-y>

The script command script offsetfrom message allows you to move an object relative to the
position of another object:

script offsetfrom <variable-name-to-move> <target-variable-name> <top-left-flag> <delta-x> <delta-y>

The variable <variable-name-to-move> is the name of the object you want to move, and
<target-variable-name> is the name of the object being used to determine the relative
position. Set the <top-left-flag> flag to 0 if you want the new position to be relative to the
top left corner of <target-variable-name>, or set it to 1, and the new position will be relative to
the bottom right corner of <target-variable-name>.

Tutorial 47 Advanced Scripting

285

Hiding and Showing, and Clicking

You can use scripting to hide objects using the following command:

script hide <variable-name>

To show them again:

script show <variable-name>

The following patch demonstrates a simple application of script show and script hide, in which
a comment box (named mycomment) is used to clearly indicate the inactive status of the
interface objects.

The script show and script hide messages

Tutorial 47 Advanced Scripting

286

The above patch makes some assumptions, however. It assumes that mycomment is in
front of the three number boxes (otherwise, it would appear behind them). It also
assumes that the user takes a simple “inactive!” sign to heart, and doesn't try to change
the number box values anyway. Take a look at this variation:

A better approach

We've added several messages. The script bringtofront and script sendtoback messages are used in
the same manner as the Max menu commands Bring to Front and Send to Back to
adjust the visual priority of the comment object. The format of those messages is:

script bringtofront <variable-name>

script sendtoback <variable-name>

To really deactivate those number boxes (named somewhere, nowhere and anywhere),
we’ve also added scripting messages that enable and disable object response to mouse
clicks:

script respondtoclick <variable-name>

script ignoreclick <variable-name>

Tutorial 47 Advanced Scripting

287

Summary

You can use scripting to replace objects in a patcher and re-establish their previous
connections. One important step in doing this is that all objects involved should be
named prior to executing the script messages. When performing scripting operations such
as replacing an object, placing all the script messages inside a message box can become
unwieldy, and placing script messages as lines in a coll object is a good solution.

288

Tutorial 48: Basic JavaScript

What is JavaScript?

JavaScript is an object-oriented scripting language originally developed to facilitate the
use of embedded software in websites. The Max js object allows you to use JavaScript as a
language within the Max environment, writing program code for your own object
without the need for external developer tools (compilers, debuggers, etc.). In this
Tutorial, we’ll show a simple example of how you would use the js object to create an
object in JavaScript to respond to simple numerical input from Max and return a number
to the patcher.

The js object gives Max users the powerful ability to write an object using an embedded
programming language directly within Max. In a nutshell, it allows us to:

• Design and program procedural operations that may be difficult or impossible to
implement using Max objects by themselves. These may include operations that
require recursion or respond to messages with an unknown number of arguments, to
give two examples.

• Create objects that respond to customizable messages and rely on their own internal
data structures.

• Schedule timed events in response to messages.

• Manage global variables for use among multiple js objects or between js objects and
the Max patcher.

• Interface to Max’s powerful scripting architecture.

• Access the file system of your computer to look for files by name and types.

In previous versions of Max, in order to develop a Max object using a programming
language other than Max itself (i.e. subpatchers) you had to develop your own external
object in C using the Max Software Development Kit. You can also develop objects in
Java using the mxj object. Both of these solutions require that the code you write be
compiled into a format that Max can execute (either directly by loading a shared library
or by executing Java code through the Java Virtual Machine). With the js object (and its
graphical cousin, jsui), code is evaluated as a script directly by the computer as you run
your patch, allowing for more immediate feedback on how the mini-program written for
your js object will behave. That isn’t to say that js doesn’t check for mistakes first; it does,

Tutorial 48 Basic JavaScript

289

and we’ll look at some of the ways in which the js object can help you catch mistakes in
your program.

The Max js object uses version 1.5 of the JavaScript language developed by Netscape.
While we don’t presume specific knowledge of JavaScript in these tutorials, the better you
understand the language, the easier it will be for you to develop code. The definitive
reference for the version of JavaScript we use in Max can be found at the following URL:

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/guide/.

Note: There are many variations on the JavaScript language, as well as a
number of extensions to the language specifically designed for its use with
web browsers. The Max js object supports only the core JavaScript
language (as outlined at the URL above) as well as some extensions added
to the language to support interfacing with Max

JavaScript in Action

• Open the tutorial patch 48.Basic Javascript.pat. If you want to hear the MIDI playback
from the patch, make sure you have an output synthesizer configured to listen to
MIDI output from Max (see Tutorial 12: Sending and receiving MIDI notes if you
need review on this topic).

• Click on the toggle at the top of the patch to start the qmetro object. The float object
sends a value into the js object at every tick of the metro. Slowly increment the
floating-point number box attached to the right inlet of the float object. The output of
the js object will change in response. The output number is displayed using the
multislider object in the patch and generates MIDI notes.

Tutorial 48 Basic JavaScript

290

As you increase the value going into the js object above 3.0, the value generated by our
js object will begin to oscillate between a high and a low value. At higher values (e.g.
above 3.5), the output of will become chaotic.

The js object in this patch simulates a simple chaotic function called the logistic
population equation. The basic formula for the function is:

f(x) = rx(1-x)

where r is the current input value, and x is the previous output value.

Tutorial 48 Basic JavaScript

291

• Double-click the js object in the Tutorial patch. A text editor will appear, containing
the source code for the js object in the patch. This code is saved as a file called
‘popu.js’ located in the same folder as the Tutorial patch.

The Maxjs object allows you to edit JavaScript code directly within Max through a basic
text editor (the same text editor, in fact, that you use when editing the contents of a coll or
text object). The source code that the js object loads is determined by the first argument to
the object, which specifies a text file in the Max search path. If you don’t give js an
argument, you can still write a Java- script program from scratch in the editor, but you’ll
have to save the file in order to use it.

Tutorial 48 Basic JavaScript

292

The Global Code

When you open the js object’s editor you’ll see some JavaScript code. The code begins
with a comment block that tells us the name of the file, what it does, and who wrote it.
The js object ignores these lines because they are prefaced with a double slash (‘//’),
commonly used in C++ (and other programming languages) to define a comment. C-
style comments (‘/*’ to start, and ‘*/’ to end) are also allowed in JavaScript.

The code after the initial comment block defines some global code for the js object. This is
code that will let us define variables and run any part of the program we need to execute
before anything happens to the object within the Max environment. In our example, we
use the global code to tell Max how many inlets and outlets we need for our js object and
to define and initialize a variable (called x):

// inlets and outlets
inlets = 1;
outlets = 1;
// global variables
var x = 0.66;

The keywords ‘inlets’ and ‘outlets’ tell Max how many of each we’ll need our js object to
have. Unlike most other changes we make to our JavaScript code, if you change the
number of inlets and outlets, you will need to manually recreate the js object in order for
it to reflect those changes. You can do this by closing and reopening the Max patch
containing the js object, or by retyping the object box.

The ‘var’ keyword tells JavaScript that the label following it is to be declared as a variable,
which we then assign to any value either in the declaration itself (as we do here, by saying
that x equals 0.66) or later on in the code. Our new variable, x, is global in scope; we’ll
investigate exactly what that means later on.

In order to make changes in our JavaScript code permanent, we need to save the code in
the text editor. When you save changes (by selecting Save from the File menu with the
text editor in the front), Max will tell you that it has updated the js object, and will report
any problems it may have had with your code.

• Type the following line underneath the ‘outlets = 1;’ statement in the code:
post(“Hi There!!!”);

Tutorial 48 Basic JavaScript

293

• Save the code in the text editor. The Max window should have printed the following:

js: Compiling Functions and Executing Global Code...

Hi There!!!

The first message tells us that the js object has reloaded our (changed) JavaScript code.
The second line shows the output from the post() statement we put in. The post()
statement prints its arguments into the Max window, letting you do exactly what the print
object does from within js.

• Add the following line right underneath where we initialize x to equal 0.66:
post(x);

When we save the code, our Max window now tells us:

js: Compiling Functions and Executing Global Code...

Hi There!!! 0.66

If you give post() a text string (enclosed in double-quotes) it will print it. Other letters
are interpreted as variable names. In this case, we asked js to tell us the value of the
variable x, which we had initialized on the previous line to 0.66. Note that post() does
not put a carriage return at the end of the line; to do this, we can place a post()
statement with no arguments.

• Add this line somewhere in between the two post() statements we’ve added:
post();

Our Max window now tells us this when we save the code:

js: Compiling Functions and Executing Global Code...

Hi There!!!

0.66

Tutorial 48 Basic JavaScript

294

Handling Mistakes

• Remove the closing parenthesis (‘)’) from any of the post() statements we’ve added
so far. Save the JavaScript code. The Max window should print an error:

js: Compiling Functions and Executing Global Code...

• error: js: Javascript: SyntaxError: syntax error, line 15

 source line: post(;

This tells us that we’ve made a type of mistake called a syntax error. This means that we
wrote something illegal from the point of view of JavaScript syntax; in this case, we broke
the rule that says that parentheses must be balanced. Mismatched parentheses, brackets,
and braces are common causes of syntax errors. Helpfully, js attempts to isolate which
line the error occurred on (the line cited to you may be slightly different, depending on
where you placed your post() statements).

• Go to the offending line in your JavaScript code and close the parentheses correctly.
When you save the code, all should be well again.

Misspellings are another common cause of mistakes in JavaScript.

• Rewrite one of your post() statements so that the word ‘post’ is spelled wrong (feel
free to be creative here). Save your script. Something like this will appear:

js: Compiling Functions and Executing Global Code...

Hi There!!!

• error: js: Javascript: ReferenceError: pst is not defined, line 15

A reference error means that we told JavaScript to execute a command that it simply
didn’t understand. While post() is in its vocabulary of legitimate commands, pst() is
not.

Note: JavaScript stopped executing our global code at the point where the error occurred.
In the case just cited, the words ‘Hi There!!!’ were printed in the Max window, but the
value of x (0.66) was not. This gives us an important clue as to where the error lies (i.e.
somewhere between the two). Using post() statements liberally in the development

Tutorial 48 Basic JavaScript

295

phase of your js code is just as important as using print objects for debugging in Max. You
can always take them out later.

• Correct your spelling and save your code. Let’s move on to the rest of the script.

Defining Functions

Max objects interface with one another through the use of methods, which are routines of
code that are executed in response to messages received at the inlets of the object. In
JavaScript, these methods are defined as functions within our code, each of which
responds to a different type of incoming Max message. In our example js object, we have
two functions defined. These functions (msg_float() and bang()) contain the code
that js executes when our object receives in its inlet a floating-point number and a bang,
respectively.

• Take a look at the bang() function first. The code looks like this:
function bang()
{

post(“the current population is”);
post(x);
post();

}

This function tells js what to do if we send it a bang from our Max patch. It will print out
the current value of x in the Max window with an explanatory preface. The post()
statement at the end of the function tells Max to put a carriage return in the Max window
so that the next message printed there will begin on a new line. Note that our function is
enclosed in curly braces. Removing one of these braces will result in a syntax error.

• In the Tutorial patch, click on the button object connected to the js object. Our bang
method should be working correctly.

• Look at the msg_float() function. Here is the code:

function msg_float(r)
{

x = r*x*(1.-x);
outlet(0, x);

}

Our msg_float() function executes the most important part of our JavaScript code,
which is to run a single iteration of our cool formula. Note that, unlike our bang()

Tutorial 48 Basic JavaScript

296

function, our msg_float() function has an argument (stated within the parentheses as
r). This argument tells the js object to assign the floating-point value coming into our
object’s inlet to the variable r. We can then use this value in the rest of the function.

Note: generally speaking, the name of the function in JavaScript will correspond directly
to the name of the message that you want to call it. For example, we respond to a bang
message with the bang() function in our js object. A function called beep() would
respond to a Max message that began with the word beep. Since float and int are reserved
words in JavaScript, however, we use msg_float() and msg_int(), respectively, to
define the functions which respond to floats and ints.

The main body of our float method sets x to the result of the multiplication of r (the value
coming in the inlet), the old value of x, and the old value of x subtracted from 1.0. This
statement:

x = r*x*(1.-x);

is an example of a powerful feature of using an embedded programming language within
Max. To accomplish this with the expr object, for example, we would have to take the
output of the object and feed it back around to an inlet in such a way as to prevent a
feedback loop in Max, probably through the use of a number box.

• Double-click the subpatcher p done_with_expr to see how you would do this using
normal Max objects. Note that because the expr object has no knowledge of it’s
previous output value, we have to store it manually and enter it again using a second
inlet to the object.

The second line of code in our float method takes our new value of x and sends it out the
js object’s outlet to Max. The outlet() function takes as its arguments the number of

Tutorial 48 Basic JavaScript

297

the outlet to use and the information to send out. The outlet numbering starts at 0 for the
leftmost (and, in our case, only) outlet.

• Try running the patch again, knowing how the code works. See if you can work out at
what point the equation becomes chaotic, and why.

Variable Scope

The key to the success of our JavaScript code resides in the use of x as a global variable.
JavaScript, like many scripting languages, will dynamically allocate variables as you use
them, allowing you to use new variable names as you go without having to predefine
them all ahead of time. These dynamic variables, however, are local to the functions
within which they are used. For example, if we had a variable i in our msg_float()
function, our bang() function would not be able to use it. Similarly, we could use i as a
variable in both functions independently of one another. Because we explicitly defined x
as a variable in our global code, both msg_float() (which evaluates x, sets it to a new
value, and sends it out to our patch) and bang() (which prints the current value of x in
the Max window) are talking about the same thing when they refer to x.

• Comment out the line:

var x = 0.66;

by placing two slashes (‘//’) at the beginning of it. Save your script, and either recreate the
js object or reopen the Tutorial patch. Try to run the patch.

With x undefined, our js object reports reference errors when you send it a float or a bang.
This is because it is trying to access a variable that has never been initialized. We could
remove these errors by setting x to some value within each of our functions, but we would
then be using x locally. Not only would this prevent us from sharing the value of x
between our two functions, it would also reinitialize x every time we sent a float into js,
preventing our object from maintaining x over multiple iterations of the function.

• Uncomment the variable declaration for x. All should be well again when you save
your script.

Summary

The js object is a powerful tool that lets you write code using a standard programming
language within Max. You define inlets, outlets, and global variables in the global code
section of the script (which resides outside of any specific function). Methods that

Tutorial 48 Basic JavaScript

298

respond to particular messages (floats, bang messages, etc.) are written as functions below
the global code, and are executed in response to the relevant messages from the Max
environment. You can use the post() function to print information in the Max window
(much as you’d use the print object in a patch), and you can use the outlet() function
to send messages out of your js object back to the Max patcher containing it. You can
write JavaScript code directly into the text editor for the js object; when you save a
modified script, the js object will scan your code for programming mistakes such as
syntax and reference errors, allowing you to program and debug your code from within
Max.

In the next two Tutorials, we’ll examine more features of JavaScript as relevant to its use
in Max.

Code Listing

// popu.js
//
// simulates the logistic population equation:
// f(x) = rx(1-x)
//
// input is r. output is current x.
//
// rld, 5.04
//
// inlets and outlets
inlets = 1;
outlets = 1;
// global variables
var x = 0.66;
// float -- run the equation once
function msg_float(r)
{

x = r*x*(1.-x);
outlet(0, x);

}
// bang -- post the current population to the max window
function bang()
{

post(“the current population is”);
post(x);
post();

}

Tutorial 48 Basic JavaScript

299

See Also

js Max JavaScript object
expr Evaluate a mathematical expression
print Print any message in the Max window

300

Tutorial 49: Scripting and Custom Methods in JavaScript

Patcher Scripting in JavaScript

With the Max js object, it’s possible to use JavaScript code to perform patcher scripting,
where you can create Max objects in a patcher dynamically, setting their properties,
sending them messages, and making connections between them. JavaScript allows you to
use procedural code to generate patcher elements in ways that may be more difficult to do
through messages to the thispatcher object. This Tutorial covers how to create and delete
objects and connections in a Max patch through custom methods written in JavaScript, as
well as to show how to use methods to handle custom messages coming from the patcher.

Much of the basic information regarding scripting is covered in Tutorial 46: Basic
scripting. You may wish to review the information presented there before proceeding
with this Tutorial.

As with the previous JavaScript Tutorial, you may wish to review how to connect your
MIDI synthesizer equipment in order to hear MIDI generated by the Tutorial patch.
Tutorial 12: Sending and receiving MIDI notes explains how to configure and test these
connections.

Tutorial 49 Scripting and Custom
Methods in JavaScript

301

• When you initially open the tutorial patch 49.Javascript Scripting.pat, you will see a
largely empty patcher with a js object in the lower part of the patcher window. The js
object has loaded a JavaScript source file called ‘autosurface.js’, which is located in the
same folder as the Tutorial patch.

The js object is configured to send numbers to a MIDI output device (using the makenote
and noteout objects). It also has a right outlet sending values to the right inlet of the pack
object driving messages to a multislider object. In addition, our js object has a number of
objects connected to its inlet. A metro object is connected to our js object, as are two
message boxes that will send the messages sliders n and reverse n, where n in each case is the
value present in the number box connected to them.

From the patch layout, we can infer that the JavaScript code in our js object should have
at least three methods, for bang, sliders, and reverse. It actually has one more, which will
become apparent when we use the patch.

Patch Auto-Generation

• Select the number box attached to the message box containing the sliders $1 message.
Type in or scroll to the number 5, and watch what happens. Change the value in the
number box. Try setting it to a large number (like 50).

Tutorial 49 Scripting and Custom
Methods in JavaScript

302

Set it to 0, and see what happens.

In response to our sliders $1 message, our js object dynamically creates Max objects and
connections through scripting. It creates pairs of ctlin and uslider objects to match the
number of sliders you request through the message to the js object. Furthermore, it
creates a funnel object with the appropriate number of inlets for the uslider objects and
makes the appropriate connections between them. The funnel object is then connected to
our js object, allowing the values generated by the sliders to be used by our JavaScript
code as well.

• As you create sliders, note that the ctlin objects are automatically numbered to listen
to incrementing MIDI controller numbers. As a result, a MIDI control surface that
sends MIDI continuous control values on multiple controller numbers will send
values to multiple uslider objects. Also, note than when you decrement the number of
sliders, the excess objects will disappear (actually, everything disappears and is

Tutorial 49 Scripting and Custom
Methods in JavaScript

303

recreated again). If you set the number of sliders to 0, all the script-created objects
(including the funnel) will be deleted from the patch.

• Set the number of sliders to something modest, such as 5. Change the values in the
uslider objects, either by clicking on them or by using a MIDI controller input. Turn
on the metro object by clicking the toggle attached to it. The values in the uslider objects
should come out of the js object in turn, creating a sequence of MIDI notes.

Tutorial 49 Scripting and Custom
Methods in JavaScript

304

The multislider object to the right of the patch will give you a running display of the
current note out of our sequencer, set at its appropriate position in the sequence.

• Click the toggle attached to the message box containing the message reverse $1. Note
that the order in which the uslider values are sequenced is now backwards. Our
multislider display runs backwards as well.

In brief, our js object dynamically creates a scalable MIDI control surface (with ctlin and
uslider objects), and uses those objects’ values to create a simple MIDI step sequencer. The
number of sliders created by our JavaScript code determines the length of the sequence.

Tutorial 49 Scripting and Custom
Methods in JavaScript

305

• Turn off both toggle objects, stopping the sequence and putting the sequencer
transport back into ‘forward’ mode. Let’s look at the code for our js object.

The Global Block: Arrays and Maxobjs

• Double-click the js object in the Tutorial patch. The code for ‘autosurface.js’ should
appear.

At the top of the code should be the familiar comment block, explaining what the script
does. Below that we should see our global code statements:

// inlets and outlets
inlets = 1;
outlets = 2;
// global variables and arrays
var numsliders = 0;
var seqcounter = 0;
var thereverse = 0;
var thevalues = new Array(128);
// Maxobj variables for scripting
var controlin = new Array(128);
var thesliders = new Array(128);
var thefunnel;

As we saw in the previous tutorial, our ‘inlets’ and ‘outlets’ at the top of the code tell js
how many inlets and outlets we want in our object.

The following block of code defines some variables that our JavaScript code will need to
use globally. These variables include:

numsliders Stores how many ‘sliders’ (ctlin and uslider pairs) we have in our patch. This
is set by the sliders message to our js object.

seqcounter Stores the current point in our sequence. This is driven by the metro object
in our patch, and therefore is changed by a bang method in our code.

thereverse Sets whether or not our sequencer is running backwards. This is set by the
reverse message to our js object.

thevalues An array (see below) of values reflecting the state of the uslider objects in
our patch. The funnel object in our patch sets these values by sending lists
to our object.

Tutorial 49 Scripting and Custom
Methods in JavaScript

306

The new Array() constructor creates arrays in JavaScript. The array variable thevalues,
above, has 128 elements, which are accessed by bracket notation following the array
name, e.g.:

k = thevalues[5];

will set the variable k to the value of the sixth element (starting from 0) of the array
thevalues.

thevalues[n] = 55;

will set the element n of the our array thevalues to 55.

Note that JavaScript treats Arrays as objects, so that:

k = thevalues.length;

will set the variable k to the number of elements in the array thevalues. For more
information on this, consult any good JavaScript reference.

After our variable declarations, we have variables that we will use to reference
dynamically created objects in our Max patch. These variable names are used internally in
our JavaScript code so that we can create, connect, delete, and modify objects all through
properties to these objects. Objects in js that refer to Max objects in a patcher are referred
to as Maxobjs. We have the following Maxobj variables in our script:

controlin An array of Maxobjs that refer to the ctlin objects in our patch.

thesliders An array of Maxobjs that refer to the uslider objects in our patch.

thefunnel A Maxobj which references the funnel object in our patch.

Note that there is no difference in JavaScript variable declaration with relation to the type
of value that the variable stores; integers, floats, strings, and objects are all considered
equivalent when declaring a variable. Similarly, arrays are defined simply to refer to
quantity of information, rather than what type of information will be stored in them.
Similarly, JavaScript will correctly type variables following a calculation, e.g.:

x = 4/2;

will set the variable x to 2 (an integer), whereas:

x = 3/2;

Tutorial 49 Scripting and Custom
Methods in JavaScript

307

will set the variable x to 1.5 (a floating-point value). Variables can switch types
dynamically throughout their existence. This use of untyped variables only exists within
the JavaScript environment, however, which is why we still need independent methods
(msg_int() and msg_float()) to deal with differently typed numbers coming in from
Max.

We will use various properties of the Maxobj object class to perform our scripting, all of
which is accomplished by a single function: our sliders() method.

Arguments, Agreements…

Our js object responds to the sliders message via a method contained in the sliders()
function (remember that the function name typically matches the message you want to
trigger that function).

• Examine the code for the sliders() function. The comments at the top of each
section explain what’s happening at each step in the process:

// sliders -- generates and binds the sliders in the max patch
function sliders(val)
{

if(arguments.length) // bail if no arguments
{

// parse arguments
a = arguments[0];
// safety check for number of sliders
if(a<0) a = 0; // too few sliders, set to 0
if(a>128) a = 128; // too many sliders, set to 128
// out with the old...
if(numsliders) this.patcher.remove(thefunnel); // if we've

done this before, get rid of the funnel
for(i=0;i<numsliders;i++) // get rid of the ctlin and

uslider objects using the old number of sliders
{

this.patcher.remove(controlin[i]);
this.patcher.remove(thesliders[i]);

}

Tutorial 49 Scripting and Custom
Methods in JavaScript

308

// ...in with the new
numsliders = a; // update our global number of sliders to

the new value
if(numsliders) thefunnel = this.patcher.newdefault(300,

300, "funnel", a); // make the funnel
for(k=0;k<a;k++) // create the new ctlin and uslider

objects, connect them to one another and to the funnel
{

controlin[k] = this.patcher.newdefault(300+(k*50), 50,
“ctlin”, k+1);

thesliders[k] = this.patcher.newdefault(300+(k*50), 100,
“uslider”);

this.patcher.connect(controlin[k], 0, thesliders[k], 0);
this.patcher.connect(thesliders[k], 0, thefunnel, k);

}

// connect new objects to this js object's inlet
ourself = this.box; // assign a Maxobj to our js object
if (numsliders) this.patcher.connect(thefunnel, 0, ourself,

0); // connect the funnel to us
}
else // complain about arguments
{

post(“sliders message needs arguments”);
post();

}
}

In pseudo-code, our sliders() function performs the following steps:

Check to see if the arguments for the sliders method are valid.
If true…
Make sure the number of sliders requested are in a reasonable range (0-128)
Delete any objects previously created by our js object.
Make the new objects and connect them to one another.
Find our js object (see below) and connect our new funnel to it.
If false…
Post an error message in the Max window and exit the function.

Our JavaScript code takes advantage of two important features of procedural
programming, namely conditional statements (if…else…) and iteration (for() loops). If
you’ve used another programming language such as C or Java, you should find these
constructions familiar. A Java- Script reference will help you with the specifics.

Tutorial 49 Scripting and Custom
Methods in JavaScript

309

One of the first things we do in our sliders() function is check to see what the
arguments were to the sliders message sent in from the patcher. We do this by checking the
arguments property of the function itself, e.g.:

if(arguments.length) {
// some code here

}

will execute the code between the braces only if there are a non-zero number of
arguments to the message that called the function. Otherwise, that part of the code will be
ignored. Similarly, you can access the arguments by number as an array:

a = arguments[0];

will assign the variable a to the value stored in the first argument of the message. In our
case, this refers to the number of sliders we want to create.

Object Creation and Maintenance

From the perspective of using js for object creation in Max, the Maxobj class allows us to
use our object variables to create, connect, and destroy objects. This is done by first
accessing the Patcher object, which is a JavaScript representation of our Max patch. The
statement:

this.patcher.remove(thefunnel)

tells js to find a Maxobj called thefunnel in the Patcher called this (which is always the
patcher containing the js object) and delete it. The ‘this’ in the statement is actually
optional, but it’s worth noting that you can use JavaScript to control objects in patches
other than the one in which the js object resides.

To create an object, we assign a variable to a new Maxobj created by the Patcher:
thefunnel = this.patcher.newdefault(300, 300, “funnel”, a);

In this case, the Maxobj thefunnel is created to be a default object at coordinates 300 by
300 on the patcher window. The object’s type is set to funnel, with the object’s arguments
set to whatever is contained in the variable a.

Note: the newdefault() method to the Patcher object creates a new object just as if you
had created it manually from the palette or patcher contextual menu. This simplifies
scripting substantially over using messages to the thispatcher object. If you wish to specify
all the object parameters (object width, flags, etc.) you can use the newobject() method
instead.

Tutorial 49 Scripting and Custom
Methods in JavaScript

310

Connections are made by taking two Maxobjs and linking them using the connect()
method to a Patcher object, e.g.:

this.patcher.connect(thesliders[5], 0, thefunnel, 5)

will connect the leftmost (0) outlet of the sixth Maxobj in the array thesliders to the sixth
inlet of the Maxobject thefunnel. Remember that numbering starts at 0 for both arrays
and inlet/outlet numbers.

We use iteration and arrays to create multiple objects at once, for example:
for(k=0;k<8;k++)

{
controlin[k] = this.patcher.newdefault(300+(k*50), 50,

“ctlin”, k+1);
thesliders[k] = this.patcher.newdefault(300+(k*50), 100,

“uslider”);
this.patcher.connect(controlin[k], 0, thesliders[k], 0);
this.patcher.connect(thesliders[k], 0, thefunnel, k);

}

will automatically generate 8 ctlin and uslider objects spaced 50 pixels apart on the patcher
window (starting at horizontal coordinate 300), connect them to one another, and then
connect them to the funnel object referenced by thefunnel. Note that the variable k in our
JavaScript code is never declared, since we only use it as a local variable (in the
sliders() function) and re-initialize it every time that function is called. In our actual
JavaScript code in the Tutorial patch, the number 8 is replaced by the local variable a,
which represents the number of sliders we want to create.

Finding Ourself in All of This

One important thing we accomplish in our sliders() method is the connection of the
Java- Script-created funnel object to our js object’s inlet. However, our js object was
created by hand, not by our JavaScript code (this would be impossible, if you think about
it). How do we bind a Maxobj to an object that was created independently of a JavaScript
program?

ourself = this.box; // assign a Maxobj to our js object

The ‘box’ property of our patcher returns a Maxobj referring to our js object itself! We
then take the variable ourself and assign it to our js object. This allows us to make
connections to the object containing our JavaScript code.

Tutorial 49 Scripting and Custom
Methods in JavaScript

311

We then connect our funnel object to our js object using our newly assigned Maxobj
ourself:

this.patcher.connect(thefunnel, 0, ourself, 0);

Other Methods

The js object in this Tutorial doesn’t just create and connect a MIDI control surface; it
also reacts to messages from the control surface as well as other messages from the Max
patcher.

• Open up the source code for the js object in the Tutorial patch again, and look for the
function called list():

// list -- read from the created funnel object
function list(val)
{

if(arguments.length==2)
{

thevalues[arguments[0]] = arguments[1];
}

}

As with our sliders() function, our list() function first checks out how many
values we’ve sent in from Max, e.g.:

if(arguments.length==2) {}

The funnel object puts out a list corresponding to the number of the inlet receiving the
value followed by the value received. For example, the number 55 arriving at the second
inlet (which is really inlet number 1) will trigger the list 1 55 from the funnel object. We
check to make sure we have two arguments in our message before we proceed in our
list() method, as we use both the values in the list in the function. We use the first
argument (which slider we moved) to determine which element of the array thevalues we
set to the second argument (the value).

Tutorial 49 Scripting and Custom
Methods in JavaScript

312

• Look at the bang() and reverse() functions in the JavaScript code.
// bang -- steps through sequencer
function bang()
{

if(seqcounter>=numsliders) // reset sequencer
{

seqcounter = 0;
}
if(thereverse) // read from the array backwards
{

outlet(1, numsliders-seqcounter-1); // send out our
location in the sequence

outlet(0, thevalues[numsliders-seqcounter-1]); // send out
the current note

}
else // read from the array forwards
{

outlet(1, seqcounter); // sound out our location in the
sequence

outlet(0, thevalues[seqcounter]); // send out the current
note

}
seqcounter++; // increment the sequence

}
// reverse -- changes sequence direction
function reverse(val)
{

if(arguments.length)
{

thereverse = arguments[0]; // flip it
}

}

Our bang() method (which in our patch is triggered by a metro object) steps through a
sequence of values in a manner analogous to the counter object. The maximum count is
set by the number of sliders we have in our patch (defined by numsliders). The direction
of the counting is always upwards, snapping back to 0 when we exceed the number of
sliders. The reverse() function sets a variable (thereverse) based on the arguments for a
reverse message sent in from Max. This changes the way in which the bang method reads
from the array (thevalues) storing the numbers from our control surface of uslider objects.
Our two outlet() functions send our current index value out our js object’s right (1)
outlet, followed by the value at that index in the sequence out our js object’s left (0) outlet.

Tutorial 49 Scripting and Custom
Methods in JavaScript

313

Note that we follow the important Max convention of outputting values from outlets in a
right-to-left order. Otherwise, our pack object would be triggered by its left inlet before it
receives the value it needs in its right inlet.

The outlet() function outputs the value at the current index in the sequence out our js
object’s left (0) outlet.

• Now that you know how the JavaScript code is working, play with the patch some
more. Think about how you would recreate the sequencer using the normal Max table
and counter objects.

Summary

The js object offers you a powerful way to create Max patches dynamically in JavaScript.
Object creation is accomplished through the assignment of variables to Maxobj objects
created by a Patcher object, which represents the patch in JavaScript. The
newdefault() and newobject() methods allow you to create objects, which can be
destroyed by a remove() method. The connect() method lets you make patcher
connections between Maxobjs in your script. A Maxobj can be assigned to the js object
itself through the ‘box’ property to the patcher. When designing JavaScript functions to
act as methods for Max messages, the arguments passed with the messages are available
through the arguments array from within the function.

The next Tutorial will look at how to schedule timed events in JavaScript, how to parse
arguments to the js object itself, and how to share a variable with the Max environment.

Code Listing
// autosurface.js
//
// automatically generate a MIDI control surface with
// visual feedback (sliders), hook it up to a funnel
// object, and use it to drive a simple sequencer.
//
// rld, 5.04
//
// inlets and outlets
inlets = 1;
outlets = 2;
// global variables and arrays
var numsliders = 0;
var seqcounter = 0;
var thereverse = 0;

Tutorial 49 Scripting and Custom
Methods in JavaScript

314

var thevalues = new Array(128);
// Maxobj variables for scripting
var controlin = new Array(128);
var thesliders = new Array(128);
var thefunnel;

// methods start here
// sliders -- generates and binds the sliders in the max patch
function sliders(val)
{

if(arguments.length) // bail if no arguments
{

// parse arguments
a = arguments[0];
// safety check for number of sliders
if(a<0) a = 0; // too few sliders, set to 0
if(a>128) a = 128; // too many sliders, set to 128
// out with the old...
if(numsliders) this.patcher.remove(thefunnel); // if we've

done this before, get rid of the funnel
for(i=0;i<numsliders;i++) // get rid of the ctlin and

uslider objects using the old number of sliders
{

this.patcher.remove(controlin[i]);
this.patcher.remove(thesliders[i]);

}
// ...in with the new
numsliders = a; // update our global number of sliders to

the new value
if(numsliders) thefunnel = this.patcher.newdefault(300,

300, "funnel", a); // make the funnel
for(k=0;k<a;k++) // create the new ctlin and uslider

objects, connect them to one another and to the funnel
{

controlin[k] = this.patcher.newdefault(300+(k*50), 50,
“ctlin”, k+1);

thesliders[k] = this.patcher.newdefault(300+(k*50), 100,
“uslider”);

this.patcher.connect(controlin[k], 0, thesliders[k], 0);
this.patcher.connect(thesliders[k], 0, thefunnel, k);

}

Tutorial 49 Scripting and Custom
Methods in JavaScript

315

// connect new objects to this js object's inlet
ourself = this.box; // assign a Maxobj to our js object
if (numsliders) this.patcher.connect(thefunnel, 0, ourself,

0); // connect the funnel to us
}
else // complain about arguments
{

post(“sliders message needs arguments”);
post();

}
}
// list -- read from the created funnel object
function list(val)
{

if(arguments.length==2)
{

thevalues[arguments[0]] = arguments[1];
}

// bang -- steps through sequencer
function bang()
{

if(seqcounter>=numsliders) // reset sequencer
{

seqcounter = 0;
}
if(thereverse) // read from the array backwards
{

outlet(1, numsliders-seqcounter-1); // send out our
location in the sequence

outlet(0, thevalues[numsliders-seqcounter-1]); // send out
the current note

}
else // read from the array forwards
{

outlet(1, seqcounter); // sound out our location in the
sequence

outlet(0, thevalues[seqcounter]); // send out the current
note

}
seqcounter++; // increment the sequence

}

Tutorial 49 Scripting and Custom
Methods in JavaScript

316

// reverse -- changes sequence direction
function reverse(val)
{

if(arguments.length)
{

thereverse = arguments[0]; // flip it
}

}

See also

js Max JavaScript object
Data Structures (Max Topics) Ways of storing data in Max
thispatcher Send messages to a patcher
counter Count the bang messages received, output the count
table Store and graphically edit an array of numbers

317

Tutorial 50: Tasks, Arguments and Global Objects in
JavaScript

Scheduling in JavaScript

The js object allows you create JavaScript functions that use the Max scheduler. These
functions can be triggered by Max messages to the js object. The timing interval at which
the function is called, how many times it repeats (including whether it repeats
indefinitely), and whether it begins executing immediately or at some point in the future
can all be determined by your code.

In this Tutorial, we’ll look at how scheduling works in JavaScript. Along the way, we’ll
look at two other important features of the JavaScript implementation in Max: js object
arguments (which allow you to pass arguments directly to your JavaScript from the object
box) and Global objects (which allow you to share data between internal js data structures
and Max).

As with the previous JavaScript Tutorials, you may wish to review how to connect your
MIDI synthesizer equipment in order to hear MIDI generated by the Tutorial patch.
Tutorial 12: Sending and receiving MIDI notes explains how to configure and test these
connections.

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

318

• Open the tutorial patch 50.Javascript Globals.pat. You’ll see four js objects, all of
which use the same JavaScript source file (called ‘globaltask.js’), which is saved on
disk in the same folder as the Tutorial patch.

• Click the button object at the top of the patch labeled ‘send a bounce.’ The four js
objects should begin to generate numbers that are then sent downstream to your
MIDI synthesizer output (via the makenote and noteout objects). Additional button
objects are connected to the left outlets of the js objects to provide visual feedback on
when a number is being sent. In addition, a patcher object called view receives the bang
messages from the button object and creates a scrolling visual feedback of the
generated rhythm with a multislider object.

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

319

Note that the specific timing of the four objects, as well as what pitches they generate, are
different; these are determined by the arguments to the js objects (more on this later).

The JavaScript code used in the js objects is a simple mock-up of an exponentially
decaying timing function (analogous to a rubber ball being dropped onto a hard floor).
Notes are sent at an exponentially increasing rate, until the speed at which they are
sending exceeds a threshold value (five milliseconds, in the case of our script). Upon
exceeding that threshold, the function stops and a bang is sent out of the right outlet of our
js objects to notify that the timing function has ceased. The use of a ‘done’ bang is a
common convention among Max objects to signify the completion of a task (c.f. line, uzi,
coll, etc.).

• Click on the toggle labeled ‘repeat’ and click the top button again. Notice that the cycle
of bouncing notes repeats, as the bang from the js objects cause them to retrigger
themselves. The difference in the timing acceleration of the four js objects will cause
them to phase over multiple iterations of the cycle (note how this is displayed in the
multislider). If you click the toggle again, the current cycle of bounces will complete in
each object and then stop. Double-click any of the js objects in the patch; let’s examine
their code.

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

320

Right on Schedule

Examine the global code for our script:

// inlets and outlets
inlets = 1;
outlets = 2;
// define global variables and set defaults
var tsk = new Task(mytask, this); // our main task
var count = 0;
var decay = 1.0;
// defaults for arguments
var dcoeff = -0.0002; // decay coefficient
var note = 60; // note to trigger upon bounce
// process arguments (decay coefficient, note to trigger)
if(jsarguments.length>1) // argument 0 is the name of the js file
{

dcoeff = jsarguments[1];
}
if(jsarguments.length>2)
{

note = jsarguments[2];
}
// Global (Max namespace) variables
glob = new Global(“bounce”);
glob.starttime = 500;

The global code section of our JavaScript file, which defines the familiar inlets, outlets (we
have two this time), and variables, has a number of things that we haven’t encountered
before. The first is a variable assigned to a special object called Task:

var tsk = new Task(mytask, this); // our main task

This creates a new Task object in JavaScript referred to by the name tsk. When we call
methods for tsk, they will relate to the scheduling of a function called mytask(). The
controlling object for the Task will be our js object (which we refer to as ‘this’). If we
would like to execute our task once, we would write:

tsk.execute(); // run our task function once

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

321

If we would like to make our task repeat every 250 milliseconds for 20 repetitions, we
would write:

tsk.interval = 250;
tsk.repeat(20);

If no arguments are given to the repeat() method, the Task will be scheduled
indefinitely, until we cancel it as follows:

tsk.cancel(); // cancel our task

The execute(), repeat(), and cancel() methods give us all of the flexibility we
need to schedule repeating events in JavaScript. In addition to the ‘interval’ property of
the Task object, we can also find out whether a task is running or not (“running”) and
how many times it has been called (“iterations”), for example.

One important thing to keep in mind is that all methods in the js object
(whether triggered by Max messages or scheduled internally through
tasks) are executed at low priority in the Max scheduler. This means that,
while they will always execute and send data to Max in the correct order,
they cannot be relied on for critically accurate timing if the scheduler is
overloaded with other actions.

Once we’ve defined our Task tsk, we trigger it through the bang() method to our js
object:

function bang()
{

tsk.cancel(); // cancel the bounce, if it's going already
count = 0; // reset the number of bounces
decay = 1.0; // reset the initial decay
tsk.interval = glob.starttime; // set the initial task interval
tsk.repeat(); // start the bouncing

}

When any of our js objects receive a bang, they cancel any previously scheduled tsk tasks,
reset some variables that are relevant to the task function, set an initial timing interval for
the task, and then start it going again.

• Start a ‘bounce’ in the Tutorial patch by clicking the button at the top. Click the
message box labeled stop. The notes should cease.

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

322

Our stop() function will cancel our previously scheduled task simply by calling the
cancel() method to tsk:

function stop()
{

tsk.cancel(); // cancel our task
}

The Task at Hand

Our Task object, once set in motion by our bang() method, calls the function defined in
its initial declaration.

• Peruse the code for the mytask() function:
// mytask -- the scheduled task - output number and reschedule next
task
function mytask()
{

if(arguments.callee.task.interval>5) // keep bouncing
{

outlet(0, note); // send a note value
decay = decay*Math.exp(++count*dcoeff); // increment the decay

variable
arguments.callee.task.interval=arguments.callee.task.inter-

val*decay; // update the task interval
}
else // bounce interval is too small, so consider it 'floored'
{

arguments.callee.task.cancel(); // cancel the task
outlet(1, bang); // send a bang out the right outlet to sig-

nify that we're done bouncing
}

}

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

323

Unlike the other functions we’ve used in our JavaScript tutorials, we don’t intend our
mytask() function to be triggered by a Max message from outside the js object. By
default, any declared function in a js object will respond to an appropriately named
message from the Max environment. Since we don’t want mytask() triggerable by a
mytask message from our patcher, we place the following line of code after the function
ends:

mytask.local = 1;

This statement makes mytask() local to the js environment, and inaccessible from
outside.

Our task function accomplishes two things: it sends out an integer to Max (triggering a
MIDI note), and increments its own timing interval so that the next run of mytask()
will happen a little bit sooner. Outside of the task function, we can change our timing
interval by setting the interval property to the task (e.g. tsk.interval = 250). Properties and
methods of a Task object can be modified within the task function by referring to the
Task as the callee, e.g.:

arguments.callee.task.interval=250; // adjust timing of task to 250
arguments.callee.task.cancel(); // have the task cancel itself

We use this reflexive capability to change our Task object’s timing interval from within
the task function. When the timing interval decreases to a suitably low value (5
milliseconds in our case), we also use this feature to have our task function cancel the
Task that called it in the first place.

Using a Math Object

• Look at the code for mytask() again, paying attention to the line that changes the
decay value with every bounce:

decay = decay*Math.exp(++count*dcoeff); // increment decay variable

In addition to the objects that allow for interaction between JavaScript and Max (Maxobj,
Task), JavaScript has a number of core objects that can be useful when writing programs
for js. The Math object has a large library of built-in properties and methods that allow
you to perform commonly needed mathematical functions. In our code, we use the
exp() method to the Math object, which returns the value of E (the base of the natural
logarithm: roughly 2.71828) to the power of its argument (in this case, our decay
coefficient multiplied by the next ball count). This is crucial to the modeling of the
exponentially increasing rate of the bounce event.

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

324

Note: The Math object in JavaScript is roughly analogous in features to the math library
in C or the expr object in Max (which is itself based on the C math library). A number of
other predefined core objects (e.g. Date, String) provide similar extensions to the
language that more-or-less match their C equivalents (e.g. time, string).

Arguments to the js Object

Two of our script’s variables (dcoeff and note) are determined by the arguments given to
the js object.

These arguments are parsed in our global code block by checking the jsarguments
property of our js object:

if(jsarguments.length>1) // argument 0 is the name of the js file
{

dcoeff = jsarguments[1];
}
if(jsarguments.length>2)
{

note = jsarguments[2];
}

Note that argument 0 is the name of the JavaScript file (e.g. ‘globaltask.js’), so,
realistically, we will usually start looking at the arguments starting at 1. The above code
checks to make sure that the arguments exist before we attempt to assign their values to
variables.

The Global Object

• Close the js object’s editor and return to the Tutorial patch for a moment. In the
lower-left hand corner, look at the number box connected to the message box
containing the text ; bounce starttime $1. Type 2000 into the number box and enter the
value. Send a bounce by clicking on the button at the top. Notice that the timing
between bounces in all the objects is wider than before. Try changing the number box
to a small value. The timing interval should start out quicker.

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

325

We would expect our message box to have sent the message starttime 2000 to a receive object
somewhere in our Max patch called bounce. In fact, it sets the starttime property of a
Global object (assigned to respond to the name bounce) to 2000 within our js objects. We
accomplish this be declaring a Global object in our global code:

// Global (Max namespace) variables
glob = new Global(“bounce”);
glob.starttime = 500;

In our code, we’ve created a variable (glob) and assigned it to a new Global object. The
argument to the global object (“bounce”) is the name in the Max namespace that will be
tied to the object. Any message sent to bounce within Max will attempt to set properties of
the Global object using that name. Note that internally, we refer to the Global object by a
variable name of our choosing (glob), not by the symbol with which Max and our js object
communicate.

We’ve added a property (“starttime”) to our object simply by assigning it in our global
block. Now, any message beginning with starttime sent to bounce in our Max patch will set
that property to its arguments.

Furthermore, this object is truly global, in the sense that not only can Max set it from
outside of a js object, multiple js objects share the specific instance of this object and its
properties. You could use this feature to have multiple js objects share information, as
well as have Max broadcast information to multiple js objects.

Summary

JavaScript allows you to schedule events dynamically using the Task object. You create a
Task and bind it to a function that gets called by the Task. You can activate and cancel the
task and set the Task’s timing interval and how often it repeats. Furthermore, by using the
“callee” property of the function called by the Task, you can set these things from within
the scheduled event itself. All methods in js objects (whether called internally or by Max
messages) are executed at low priority in the scheduler.

JavaScript has a number of core objects that provide functionality for common
programming routines that you may find necessary. The Math object, for example, gives
you access to a variety of mathematical functions that you would find in the C math
library or in the Max expr object.

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

326

Arguments to the js object are handled by the “jsarguments” property to the object. The
object starts numbering its arguments at 0, but the first argument to js is the name of the
source file it had loaded.

Global objects in JavaScript allow communication between js objects, and allow for object
properties to be set directly from the Max environment.

Code Listing

// globaltask.js
//
// generate a stream of numbers timed to an exponentially
// decaying time curve. arguments set the curve and the
// value to output.
//
// rld, 5.04
//
// inlets and outlets
inlets = 1;
outlets = 2;

// define global variables and set defaults
var tsk = new Task(mytask, this); // our main task
var count = 0;
var decay = 1.0;
// defaults for arguments
var dcoeff = -0.0002; // decay coefficient
var note = 60; // note to trigger upon bounce
// process arguments (decay coefficient, note to trigger)
if(jsarguments.length>1) // argument 0 is the name of the js file
{

dcoeff = jsarguments[1];
}
if(jsarguments.length>2)
{

note = jsarguments[2];
}
// Global (Max namespace) variables
glob = new Global(“bounce”);
glob.starttime = 500;

Tutorial 50 Tasks, Objects and Global
Arguments in JavaScript

327

// bang -- start the task
function bang()
{

tsk.cancel(); // cancel the bounce, if it's going already
count = 0; // reset the number of bounces
decay = 1.0; // reset the initial decay
tsk.interval = glob.starttime; // set the initial task interval
tsk.repeat(); // start the bouncing

}

// stop -- allow the user to stop the bouncing
function stop()
{

tsk.cancel(); // cancel our task
}
// mytask -- the scheduled task - output number and reschedule next
task
function mytask()
{

if(arguments.callee.task.interval>5) // keep bouncing
{

outlet(0, note); // send a note value
decay = decay*Math.exp(++count*dcoeff); // increment the decay

variable
arguments.callee.task.interval=arguments.callee.task.inter-

val*decay; // update the task interval
}
else // bounce interval is too small, so consider it 'floored'
{

arguments.callee.task.cancel(); // cancel the task
outlet(1, bang); // send a bang out the right outlet to sig-

nify that we're done bouncing
}

}
mytask.local = 1; // prevent triggering the task directly from Max

See also

js Max JavaScript object
expr Evaluate a mathematical expression
send Send messages without patch cords
var Share a stored number with other objects

328

Tutorial 51: Designing User Interfaces in JavaScript

The jsui object allows you use JavaScript to design graphical user interface objects for use
in the Max environment. The JavaScript implementation for the jsui object is similar to
that used in the js object, with an added API that supports two- and three-dimensional
vector graphics drawn with OpenGL commands. It also includes methods for handling
mouse interaction in the jsui object window.

In addition to the advantages provided by JavaScript, jsui provides a number of built-in
features that make UI development flexible:

• jsui objects draw their geometries relative to the size of the jsui object box; resizing a
jsui object will correctly resize all of the drawn elements inside of it.

• jsui objects work with a vector graphics language (OpenGL) that supports a wide
variety of simple shape and drawing primitives. In addition, a number of higher-level
graphics functions are available. The jsui object can also perform anti-aliasing on the
image to give you as smooth an object as possible, though this comes with a decrease
in performance.

• The jsui object allows you to draw a scene that exceeds the boundaries of the object
box. By adjusting the camera orientation in the OpenGL space, you can create and
manage different ‘views’ of the same UI object.

In addition to using the jsui object for user-interface design, one could use the object
simply as an OpenGL graphics engine built into the Max patcher for algorithmic drawing
operations.

This Tutorial assumes that you’ve already looked at the JavaScript Tutorials in this
manual. The jsui object bases most of its graphics language on OpenGL functions, the
specifics of which are beyond the scope of this Tutorial. The OpenGL ‘Redbook’ is the
standard reference for these functions. An online version is available at:

http://www.opengl.org/documentation/red_book_1.0/

The OpenGL API supported by jsui is contained in an object called jsui sketch. This object
understands most OpenGL commands and symbolic constants. Converting between
OpenGL code (e.g. as given in C in the ‘Redbook’ code examples) and sketch methods

Tutorial 51 Designing User Interfaces
in JavaScript

329

and properties for jsui JavaScript code is quite straightforward if you observe the following
guidelines:

• All OpenGL commands are lowercase in the jsui sketch object, e.g. glColor() becomes
sketch.glcolor().

• OpenGL symbolic constants, in addition to being lowercase, lose their ‘GL_’ prefix, so
that GL_CLIP_PLANE1 becomes clip_plane1(), for example.

A number of higher-level drawing and shape commands are available which may speed
up user interface development. The jsui sketch reference found in the Javascript in Max
manual (and the help patch for the jsui object) contain lists of these commands.

jsui in Action

• Open the tutorial patch 51.Javascript UI.pat. You will see a jsui object containing a
grid of light red circles against a green background. Clicking on a circle inside the
object will change the circle’s color to a darker red. Clicking on the same circle again
will change the color back to light red.

Tutorial 51 Designing User Interfaces
in JavaScript

330

• Click on some circles so that they are highlighted (in dark red). At the right of the
patch, manipulate some of the uslider objects above the router object. Note the
correspondence between which circles are clicked and which uslider objects below the
router echo the values from above. Click on the message box labeled clear attached to
the jsui object. The circles should all go to light red and the router object will no longer
pass messages from the uslider objects above. Click on the message box containing the
list 0 0 1, 1 1 1, etc. The jsui object should update to show a diagonal row. The router
object will now pass messages from the first uslider above to the first uslider below, and
so on.

Our jsui object uses JavaScript code to emulate some of the functionality of the Max
matrixctrl object. The columns represent the input to the router object; the rows specify the
output. Our jsui communicates with the router object by sending lists (in the format input
output state) that tell the router object to pass messages received at an inlet to all the
appropriate outlets given the jsui object’s current configuration.

Like the js object, the jsui object gets its program from a file written in JavaScript saved
somewhere in the search patch. Because it is a graphical object, there is no object box to
type in the name of the file. Instead, we set the JavaScript source file using the jsui object.’s
Inspector

Tutorial 51 Designing User Interfaces
in JavaScript

331

• Unlock the Tutorial patch and highlight the jsui object. Under the Object menu, select
Get Info…. An Inspector should appear with the name of our jsui source file
(‘mymatrix.js’) in the text field labeled ‘JavaScript File.’

Tutorial 51 Designing User Interfaces
in JavaScript

332

You can also set the size of the object in the Inspector, as well as turn on or off a
border around the object. Disabling the object border, combined with setting the
background color of your Max patch to match that of your jsui object, can help you
design a seamless user interface.

Tutorial 51 Designing User Interfaces
in JavaScript

333

The Drawing Code

• The jsui object is graphical, so double-clicking the object will not open the text editor
as it does with the js object. Instead, click the message box labeled open. The text editor
containing our JavaScript file (‘mymatrix.js’) will appear. Our JavaScript file is saved
on disk in the same folder as the Tutorial patch.

As with a js script, our code for the jsui object starts with a global block that allows us
to define inlets and outlets for the object and global variables for our code. It is also
where we type commands that we want to occur when the object is initialized:

// inlets and outlets
inlets = 1;
outlets = 1;
// global variables
var ncols=4; // default columns
var nrows=4; // default rows
var vbrgb = [0.8,1.,0.8,0.5];
var vmrgb = [0.9,0.5,0.5,0.75];
var vfrgb = [1.,0.,0.2,1.];
// initialize state array
var state = new Array(8);
for(i=0;i<8;i++)
{

state[i] = new Array(8);
for(j=0;j<64;j++)
{

state[i][j] = 0;
}

}
// set up jsui defaults to 2d
sketch.default2d();
// initialize graphics
draw();
refresh();

Our JavaScript code defines two global variables (ncols and nrows) which can be accessed
by all functions, as well as a number of global Array objects that define colors for the
drawing and a state array that we will use to hold information about which circles are ‘on’
and which are ‘off’ in our user interface.

Tutorial 51 Designing User Interfaces
in JavaScript

334

Note: Multi-dimensional arrays in JavaScript are allocated by an Array
object in which each element of the Array is itself an Array object (and so
on, if more than two dimensions are needed). This may seem somewhat
unusual if you’ve worked in other programming languages where multi-
dimensional arrays can be declared directly (e.g. C). The for() loops in
our global block accomplish this allocation and initialize all the elements
of the state array to 0. Once a multi-dimensional array is created, it can be
referenced using common bracket notation, e.g. state[4][2].

Following our variable and array declarations, we find three commands that refer to the
graphical behavior of the jsui object. The first, sketch.default2d(), tells our jsui
object to initialize a number of default behaviors with the assumption that we will be
giving it graphics commands for a two-dimensional scene. It sets a default view upon the
OpenGL rendering context and performs a number of utility routines to make it easy for
us to simply start placing graphical elements in the window. The draw() command
(which could be named anything) refers to our main graphics function which we write to
contain all the commands needed to draw the user interface of the jsui object. The
refresh() command copies the OpenGL backbuffer (where the drawing is done
initially to prevent flicker) to the actual screen display. Commenting out the refresh()
command will prevent our jsui object from ever showing us anything.

• Below the global block, examine the draw() function. This is the function that
provides jsui with all the commands it needs to draw our screen interface:

// draw -- main graphics function
function draw()
{

with (sketch)
{
// set how the polygons are rendered
glclearcolor(vbrgb[0],vbrgb[1],vbrgb[2],vbrgb[3]); // set the

clear color
glclear(); // erase the background
colstep=2./ncols; // how much to move over per column
rowstep=2./nrows; // how much to move over per row
for(i=0;i<ncols;i++) // iterate through the columns
{
for(j=0;j<nrows;j++) // iterate through the rows
{

moveto((i*colstep + colstep/2)-1.0, 1.0 - (j*rowstep +
rowstep/2), 0.); // move the drawing point

if(state[i][j]) // set 'on' color

Tutorial 51 Designing User Interfaces
in JavaScript

335

{
glcolor(vfrgb[0],vfrgb[1],vfrgb[2],vfrgb[3]);

}
else // set 'off' color (midway between vbrgb and vfrgb)

{
glcolor(vmrgb[0],vmrgb[1],vmrgb[2],vmrgb[3]);

}
circle(0.7/Math.max(nrows,ncols)); // draw the circle

}
}

}
}

The graphics commands (everything beginning with ‘gl’, as well as the circle()
command) are all methods and properties of the sketch object, which encapsulates most
of the OpenGL API, much as the Math object encapsulates most common math
functions.

Note: The JavaScript with() statement allows us to use properties and
methods belonging to an object (in this case the sketch object that provides
us with our OpenGL functionality) without having to reference ‘sketch’ in
every command. Without the with(), we would have to write
sketch.glcolor() instead of glcolor(), sketch.circle()
instead of circle(), etc. This useful trick could also be implemented in
functions that rely heavily on other objects (e.g. Task or Patcher).

Our draw() function sets some default drawing behaviors and clears the window with
the color defined by the vbrgb array. It then iterates through our state array based on how
many columns (ncols) and rows (nrows) we’ve defined for our object. If a particular state
element is 0 (off), it draws a circle in the color defined by vmrgb. If an element is 1 (on),
the circle is drawn in the vfrgb color. The position of the circles is determined by the
number of rows and columns, and is based on boundaries of our OpenGL world, which
are set to be between –1.0 and 1.0 on both axes (i.e. the middle of our jsui window in
OpenGL coordinates is 0, 0).

Note: The size of the world is not limited to coordinates in the range of
–1.0 to 1.0; our default viewport merely sets us at the center of the scene
whose y range is –1.0 to 1.0 and whose x range is scaled based on the
aspect ration of the object. Because our object box happens to be square,
our ranges are the same on both axes. Changing the viewport (by
manipulating the position of our virtual “camera”, for example) will
change what coordinates are visible in the jsui object’s box.

Tutorial 51 Designing User Interfaces
in JavaScript

336

Setting Parameters

• In the Tutorial patch, change the number box objects that set the rows and columns.
Note that the object will dynamically add up to eight rows and columns of circles
based on those values. Look at the rows() and cols() functions in the JavaScript
code. Note that they call a bang() function after setting their variables.

// rows -- change number of rows in jsui
function rows(val)
{

if(arguments.length)
{

nrows=arguments[0];
bang(); // draw and refresh display

}
}
// cols -- change number of columns is jsui
function cols(val)
{

if(arguments.length)
{

ncols=arguments[0];
bang(); // draw and refresh display

}
}

The bang() function, which we call after nearly every change made to the object from
Max (including mouse events), simply calls draw() and refresh() as we did in our
global block, causing the jsui object to update its window to reflect any graphical changes.

// bang -- draw and refresh display

Tutorial 51 Designing User Interfaces
in JavaScript

337

function bang()
{

draw();
refresh();

}

By only doing the drawing when necessary, we are able to reduce the amount of processor
time the object uses.

• In the Tutorial patcher, change the swatch objects that set the frgb and brgb messages to
our jsui object. Look at the corresponding functions (frgb() and brgb()) in the
JavaScript code. Note that the array for the ‘off’ circle’s color (vmrgb) is midway
between the colors set by frgb and brgb messages:

// frgb -- change foreground (clicked) circle color
function frgb(r,g,b)
{

vfrgb[0] = r/255.;
vfrgb[1] = g/255.;
vfrgb[2] = b/255.;
vmrgb[0] = 0.5*(vfrgb[0]+vbrgb[0]);
vmrgb[1] = 0.5*(vfrgb[1]+vbrgb[1]);
vmrgb[2] = 0.5*(vfrgb[2]+vbrgb[2]);
bang(); // draw and refresh display

}
// brgb -- change background color
function brgb(r,g,b)
{

vbrgb[0] = r/255.;
vbrgb[1] = g/255.;
vbrgb[2] = b/255.;
vmrgb[0] = 0.5*(vfrgb[0]+vbrgb[0]);
vmrgb[1] = 0.5*(vfrgb[1]+vbrgb[1]);
vmrgb[2] = 0.5*(vfrgb[2]+vbrgb[2]);
bang(); // draw and refresh display

}

Note: Color in OpenGL is represented as four floating-point values in the
range 0.0-1.0, corresponding to the red, green, blue, and alpha
(transparency) amounts, respectively. This is in contrast to many video
systems that commonly refer to color in the integer 0-255 (with no alpha
value). Most of the work in our frgb() and brgb() functions is to
convert from the latter (used by the swatch object) into the former

(understood by the jsui object).

Tutorial 51 Designing User Interfaces
in JavaScript

338

Mouse Interaction

• Unlock the Tutorial patcher and resize the jsui object (the circles should resize
dynamically). Lock the patcher and notice that the mouse clicks still change the states
of the correct circles. Lock the patch again and look at the onclick() function in the
JavaScript code.

The onclick(), ondblclick(), and ondrag() functions, when defined, tell our jsui
object what to do when a user clicks, double-clicks, or drags the mouse across the object.
The function is called with arguments for where in the object’s window the action
occurred, as well as a number of flags (such as whether the mouse was depressed, the state
of the shift key, etc.). In our onclick() function, we only use first two arguments,
corresponding to the x and the y of the mouse click.

// onclick -- deal with mouse click event
function onclick(x,y)
{

worldx = sketch.screentoworld(x,y)[0];
worldy = sketch.screentoworld(x,y)[1];
colwidth = 2./ncols; // width of a column, in world coordinates
rowheight = 2./nrows; // width of a row, in world coordinates
x_click = Math.floor((worldx+1.)/colwidth); // which column we

clicked
y_click = Math.floor((1.-worldy)/rowheight); // which row we

clicked
state[x_click][y_click] = !state[x_click][y_click]; // flip the

state of the clicked point
outlet(0, x_click, y_click, state[x_click][y_click]); // output

the coordinates and state of the clicked point
bang(); // draw and refresh display

}

Our OpenGL graphics world is defined in terms of floating-point coordinates (in our
case, between –1.0 and 1.0). The jsui mouse functions return coordinates based on which
pixel (counting away from the upper left-hand corner of the object box) the mouse event
occurred. We need to convert between these two systems (of world coordinates and screen
coordinates, respectively) in order to properly evaluate the mouse events for our grid of
circles. The sketch methods worldtoscreen() and screentoworld() perform these
conversions for us:

worldx = sketch.screentoworld(x,y)[0];
worldy = sketch.screentoworld(x,y)[1];

Once we know the width and height where we clicked, we can subdivide it based on how
many circles we have on each axis:

colwidth = 2./ncols; // width of a column, in world coordinates

Tutorial 51 Designing User Interfaces
in JavaScript

339

rowheight = 2./nrows; // width of a row, in world coordinates

We can then plug in the coordinates of the mouse click to figure out which circle we
clicked nearest to:

x_click = Math.floor((worldx+1.)/colwidth); // which column we
clicked

y_click = Math.floor((1.-worldy)/rowheight); // which row we
clicked

We then reverse the element of the state array corresponding to the circle we clicked:

state[x_click][y_click] = !state[x_click][y_click];

After we’ve set the state array correctly, we send out a list corresponding to the change
out our jsui object’s outlet into Max. We then bang our own jsui object, updating the
graphics to reflect the change:

outlet(0, x_click, y_click, state[x_click][y_click]);
bang();

Note that we have set our onclick() function to be local, so that it can’t be triggered
from an onclick message sent from our Max patch.

• Familiarize yourself with the JavaScript code and how it relates to the behavior of the
jsui object in the patcher. Click on the toggle object to activate the metro object at the
right of the patch. This will simulate some input from the uslider objects. Place
post() statements in the JavaScript code to help navigate the values as they are
passed from mouse click to list output.

Summary

The jsui object is a powerful tool to allow you to design and implement customizable user
interfaces using JavaScript as a programming language. The key points in the program
involve the main drawing function (which defines a sequence of commands to describe
the jsui object’s graphical display) and the mouse interaction functions onclick(),
ondblclick(), and ondrag(). Important things to note are the differences in color
representation (floating point vs. integer) and spatial coordinates (floating-point world
coordinates vs. Cartesian pixel coordinates) between the OpenGL API used in the jsui
sketch object and the Max environment, respectively.

Tutorial 51 Designing User Interfaces
in JavaScript

340

Code Listing

// mymatrix.js
//
// simulates a simple grid of clickable widgets (a la matrixctrl)
//
// rld, 5.04
//
// inlets and outlets
inlets = 1;
outlets = 1;
// global variables
var ncols=4; // default columns
var nrows=4; // default rows
var vbrgb = [0.8,1.,0.8,0.5];
var vmrgb = [0.9,0.5,0.5,0.75];
var vfrgb = [1.,0.,0.2,1.];
// initialize state array
var state = new Array(8);
for(i=0;i<8;i++)
{

state[i] = new Array(8);
for(j=0;j<64;j++)
{

state[i][j] = 0;
}

}
// set up jsui defaults to 2d
sketch.default2d();
// initialize graphics
draw();
refresh();
// draw -- main graphics function
function draw()
{

with (sketch)
{

// set how the polygons are rendered
glclearcolor(vbrgb[0],vbrgb[1],vbrgb[2],vbrgb[3]); // set the

clear color
glclear(); // erase the background
colstep=2./ncols; // how much to move over per column
rowstep=2./nrows; // how much to move over per row

Tutorial 51 Designing User Interfaces
in JavaScript

341

for(i=0;i<ncols;i++) // iterate through the columns
{

for(j=0;j<nrows;j++) // iterate through the rows
{

moveto((i*colstep + colstep/2)-1.0, 1.0 - (j*rowstep +
rowstep/2), 0.); // move the drawing point

if(state[i][j]) // set 'on' color
{

glcolor(vfrgb[0],vfrgb[1],vfrgb[2],vfrgb[3]);
}
else // set 'off' color (midway between vbrgb and vfrgb)
{

glcolor(vmrgb[0],vmrgb[1],vmrgb[2],vmrgb[3]);
}
circle(0.7/Math.max(nrows,ncols)); // draw the circle

}
}

}
}
// bang -- draw and refresh display
function bang()
{

draw();
refresh();

}
// rows -- change number of rows in jsui
function rows(val)
{

if(arguments.length)
{

nrows=arguments[0];
bang(); // draw and refresh display

}
}
// cols -- change number of columns is jsui
function cols(val)
{

if(arguments.length)
{

ncols=arguments[0];
bang(); // draw and refresh display

}
}

Tutorial 51 Designing User Interfaces
in JavaScript

342

// list -- update our state to respond to a change from Max
function list(v)
{

if(arguments.length==3) // bail if incorrect number of arguments
{

state[arguments[0]][arguments[1]]=arguments[2]; // update our
internal state based on the list

outlet(0, arguments[0], arguments[1], arguments[2]); // echo
the list out the outlet

}
bang(); // draw and refresh display

}
// clear -- wipe the state clean
function clear()
{

for(i=0;i<ncols;i++)
{

for(j=0;j<nrows;j++)
{

state[i][j]=0; // wipe the state
}

}
outlet(0, “clear”); // clear the router or matrix~ downstream
bang(); // draw and refresh display

}
// frgb -- change foreground (clicked) sphere color
function frgb(r,g,b)
{

vfrgb[0] = r/255.;
vfrgb[1] = g/255.;
vfrgb[2] = b/255.;
vmrgb[0] = 0.5*(vfrgb[0]+vbrgb[0]);
vmrgb[1] = 0.5*(vfrgb[1]+vbrgb[1]);
vmrgb[2] = 0.5*(vfrgb[2]+vbrgb[2]);
bang(); // draw and refresh display

}
// brgb -- change background color
function brgb(r,g,b)
{

vbrgb[0] = r/255.;
vbrgb[1] = g/255.;
vbrgb[2] = b/255.;
vmrgb[0] = 0.5*(vfrgb[0]+vbrgb[0]);
vmrgb[1] = 0.5*(vfrgb[1]+vbrgb[1]);

Tutorial 51 Designing User Interfaces
in JavaScript

343

vmrgb[2] = 0.5*(vfrgb[2]+vbrgb[2]);
bang(); // draw and refresh display

}
// onresize -- deal with a resized jsui box
function onresize(w,h)
{

bang(); // draw and refresh display
}
onresize.local = 1; // make function private to prevent triggering
from Max

// onclick -- deal with mouse click event
function onclick(x,y)
{

worldx = sketch.screentoworld(x,y)[0];
worldy = sketch.screentoworld(x,y)[1];
colwidth = 2./ncols; // width of a column, in world coordinates

rowheight = 2./nrows; // width of a row, in world coordinates
x_click = Math.floor((worldx+1.)/colwidth); // which column we

clicked
y_click = Math.floor((1.-worldy)/rowheight); // which row we

clicked
state[x_click][y_click] = !state[x_click][y_click]; // flip the

state of the clicked point
outlet(0, x_click, y_click, state[x_click][y_click]); // output

the coordinates and state of the clicked point
bang(); // draw and refresh display

}
onclick.local = 1; // make function private to prevent triggering
from Max
// ondblclick -- pass buck to onclick()
function ondblclick(x,y)
{

onclick(x,y);
}
ondblclick.local = 1; // make function private to prevent triggering
from Max

See also

jsui JavaScript UI object
js Max JavaScript object
lcd Draw graphics in a Patcher window

Tutorial 51 Designing User Interfaces
in JavaScript

344

matrixctrl Matrix switch control
router Max message router

345

Tutorial 52: Patcher Storage

What is pattr?

Max has a wide variety of objects for storing and managing data. Objects such as table,
funbuff, coll, umenu, and ubumenu all store information that you can set manually or via a
mechanism within a patch itself. The preset object, which also stores data, is useful for
capturing and recalling the ‘states’ of user-interface objects within a patcher, giving you
the ability to rapidly restore settings to multiple parts of your patch in one step. See
Tutorial 37: Data Structures for a review of these objects.

However, sometimes a project in Max will require a more sophisticated state
management system. The pattr family of objects (pattr, pattrhub, autopattr, and
pattrstorage) provides the functionality of the preset object and adds a more extensive set
of state management features.

• We can maintain sets of data from objects throughout a Max patch hierarchy. For
example, with pattr you can control the state of objects inside of patcher and bpatcher
objects all from the top level of the patch.

• We can store any type of data used by any type of object (including data simply stored
inside a pattr itself, without any other objects involved).

• We can use pattr objects to remotely set and query the state of objects controlled by
the pattr system from anywhere within the patch.

• The pattr objects store groups of settings as XML files, allowing us to easily read and
edit saved data outside of Max.

• The pattr objects can recall the state of objects in a specific order, avoiding difficulties
with, for example, the recalling of a toggle object that starts a process before all the
variables are in place for the process to function correctly.

• Not only can we store the states of many objects under a single address, we can also
interpolate between these states, allowing for a seamless crossfade between multiple
settings.

• The pattr objects feature a high-level interface for viewing and managing the current
state of controlled objects and the states that have been saved.

Tutorial 52 Patcher Storage

346

In this tutorial, we’ll look at some of the basic features of pattr and pattrhub, showing how
the objects can be used to communicate remotely with objects anywhere in a Max patch.

Object Binding

• Open the tutorial patch 52.pattr Basics.pat and turn on the metro object with the toggle
object box labeled ‘start’. You should hear some notes out of your default MIDI
synthesizer. The number box attached to the metro object controls the speed of the
generated pattern. Click on the colored message boxes to the right of the patch and
note that they change the value of that number box even though there are no patch
cords or send, forward, or receive objects in the patch.

Tutorial 52 Patcher Storage

347

Clicking in a colored message box changes the metro object’s time value

The pattr object to the right of the metro object is controlling the value in the number box
above it. In the language of patcher storage, we say that our pattr object is bound to the
number box. When we send messages to that pattr object, it will at all times refer to the data
stored in the number box, allowing us to ask the pattr object what the number is currently
set to, as well as tell the pattr object to set the number to a specific value remotely.

Tutorial 52 Patcher Storage

348

Our pattr object has a name—speed—which is set by the object’s argument and allows
other pattr-family objects to communicate with it. The pattrhub object at the bottom of
the patch can receive messages and forward them to any pattr objects in the patch. By
sending the message speed 125 to the pattrhub, we are telling the object to find the pattr with
the name ‘speed.’ If it finds the relevant pattr object, it will instruct the object to send the
message 125 to whatever object it is bound to (in this case, our number box).

• Unlock the patch and click on the number box attached to the metro object. Select
Name… from the Object menu.

Our pattr object is bound to our number box because the bindto attribute of our pattr object
is set to the name of our number box (‘temponum’). For more on naming Max objects, and
the application of this technique to patcher scripting, see Tutorial 46: Basic scripting.
Note that the pattrhub object controls our number box via the name of the pattr object to
which it is bound (‘speed’), not the name of the number box itself (‘temponum’).

• Rename the number box to something else and close the Name Object inspector. Try
changing settings for the patch by clicking on the message boxes again.

Note that if we rename our referred object, our pattr object can no longer bind to it. In
order to rebind it, we need to tell pattr to bind to our number box again.

Open the Name Object inspector for the number box and name it back to
‘temponum’. Close the inspector and recreate the pattr object binding to ‘temponum’
(either delete the object and undo the deletion, or create a new pattr object). Verify

Tutorial 52 Patcher Storage

349

that it is receiving updates from the pattrhub object by clicking on the message boxes
again.

Instead of recreating the pattr object, we could have sent our newly ‘unbound’ pattr object
a bindto message with the name of the number box, setting the ‘bindto’ attribute to a valid
object.

More Ways Than One

Naming a Max object and explicitly binding a pattr to it with its bindto attribute is only one
way to get a pattr to refer to an object in our patch. It has the advantage of requiring no
connecting patchcords between the two objects, allowing them to communicate from
spatially disparate parts of the patcher.

• Open the subpatch notes by double-clicking the patcher object containing it. This
subpatch contains eight pattr object-bound number box objects that define the four
pitches in our pattern generator, as well as the number of beats between each trigger
of the pitch. This is the part of the patch that allows us to construct a polyrhythmic
pattern off of a single counter object (driven by the metro object in the main patcher).

Tutorial 52 Patcher Storage

350

Click on the message boxes back in the main patcher with this window open and notice
that the number box objects in the subpatch update correctly when you click on the
different patterns.

Clicking on the message box updates the subpatch values, too!

In addition to binding objects to pattr through explicit naming and the bindto attribute,
pattr objects can control other Max objects through patchcord connections.

The notes subpatch shows two possible ways to do this

1. Using the pattr object itself to store the data

2. Automatically binding a pattr object to an object using the pattr object’s middle outlet.

Tutorial 52 Patcher Storage

351

Internal Storage

If a pattr object is unbound, it will store any messages sent in its left inlet and recall them
from its left outlet. Messages sent to an unbound pattr object from a pattrhub object will
echo out of the left outlet as well.

• Unlock the notes subpatch and attach an hslider object to the left outlet of one of the
pattr objects named ‘val_a’, ‘val_b’, ‘val_c’, or ‘val_d’. Recall the pattr objects’ states by
clicking on the message boxes in the main patch. Scroll the number box attached to the
pattr object. The hslider object should move as well.

The pattr objects controlling our pitches are not bound to any single object, and are
maintaining the values of the number box objects attached to them not by referring to the
objects directly, but by receiving their values as messages. As a result, the number box
objects attached to these pattr objects can be deleted and replaced with other objects (or
more than one object). Because the pattr object outputs its values when changed (either
directly or remotely) we can easily attach multiple objects to the pattr object to set and
display values stored in the object.

Note: The use of the prepend object with ‘set’ argument in pattr connections is to prevent
the triggering of MIDI events when we recall the pattr object’s state. Unlike most Max
objects, pattr objects can be connected to other objects that are directly connected to them
in turn without causing a stack overflow.

Automatic Binding

• In the same subpatch, try to connect an hslider object to the middle inlet of one of the
pattr objects labeled ‘mod_a’, ‘mod_b’, ‘mod_c’, or ‘mod_d’. The Max window should

Tutorial 52 Patcher Storage

352

print an error message and the program should prevent you from making the
connection.

The middle outlet of pattr allows for the automatic binding of the pattr to a single object in
the same patcher. The number box objects controlling the % objects are communicating
with their respective pattr objects just as if we had named them and bound the pattr
objects to them manually.

• Look at the names for the number box objects by selecting Name… from the Object
menu.

The ‘bindto’ (middle) outlet of pattr objects automatically gives the referring object a
name if it doesn’t have one already. The name is based on the class of object attached, and
multiple objects of the same class in a patch will be given incrementing notation to
uniquely identify them (e.g. ‘number’, ‘number[1]’, ‘number[2]’, etc.).

• Back in the main patch, open the durs subpatch of the main patch by double-clicking
the patcher object containing it. Observe that the two pattr objects in there (‘min’ and
‘max’) have been bound to two number box objects through their middle outlets.

One Hub to Rule Them All

• Close the subpatchers and go back to the main Tutorial patch. Look at the message
boxes again and notice the notation used in them to refer to pattr objects inside
subpatchers.

Because most of our pattr objects are inside subpatchers, the pattrhub object refers to them
using a colon-separated notation that takes the form

subpatcher::pattr_name

We can communicate to pattr objects in nested subpatchers by the same convention, e.g. a
pattr named ‘yikes’ in a patcher called stuff in a bpatcher called things would be accessed
through pattrhub with the name:

things::stuff::yikes

• Using the ubumenu object in the main Tutorial patch, select one of the pattr objects in
the patch.

In addition to setting the state of pattr objects through pattrhub, we can also query the
state of pattr objects, which will then tell pattrhub their internal state or the value of the

Tutorial 52 Patcher Storage

353

object to which they’re bound. We do this by sending pattrhub the message get followed by
the name of the pattr object we want to query, with no space in the message, e.g. getspeed
will poll the state of the pattr named ‘speed’.

The number box to the right of the ubumenu reflects the current value of the selected pattr,
output by the second outlet of pattrhub as a message beginning with the name of the
queried pattr.

• Change the value of the selected pattr by changing the number box next to the ubumenu.
Check to see that the value changed by looking at the number box controlled by that
pattr. Select some other pattr objects and change their values, familiarizing yourself
with how the system allows you to query and set the states of objects anywhere in the
patch.

Summary

The pattr objects provide a powerful way to manage data from multiple objects in a Max
patch. The pattr object can maintain its own internal information (sent and returned
through its leftmost inlet and outlet), or it can bind to a Max user interface object either
by naming that object and using the pattr object’s bindto attribute, or by using the middle
outlet of the pattr object to automatically name and bind to an object. Each pattr object
can only bind to one object at a time. The pattrhub object allows you to control the state of
all pattr objects within a patch, including those within subpatchers, which can be accessed
through a hierarchical notation system of successive patcher names separated by double
colons (::) followed by the name of the appropriate pattr object. By sending a get message
(followed by the name of a pattr with no intervening space) you can query the state of any
pattr object within a patch from a pattrhub.

In the next tutorial we’ll look at two other objects in the pattr family, which allow you to
automatically bind multiple Max objects to the pattr system and store and recall sets of
data from pattr objects.

See Also

pattr patcher-specific named data wrapper
pattrhub make your pattr objects work for you!
patcher Create a subpatch within a patch
preset Store and recall the settings of other objects
thispatcher Send messages to a patcher

354

Tutorial 53: More Patcher Storage

Introduction

In the last tutorial, we learned how to use the Max pattr object to help you manage data,
either by binding to an object and referencing its data or by storing the data itself. The
pattrhub object allows you to remotely query and set the data stored in pattr objects
throughout a patcher hierarchy. In this tutorial, we’ll look at two powerful extensions to the
pattr family: autopattr, which simplifies the binding of large groups of objects to the pattr
system, and pattrstorage, which provides an extensive system for storing and recalling ‘states’
of data stored in multiple pattr objects.

Automatic Binding

• Open the tutorial patch 53.autopattr.Bindings.pat and start the patch by clicking the
toggle box attached to the metro object in the upper-left corner of the patch. The patch
creates an algorithmic drawing based on the parameters stored in the rslider object and
number box objects attached to the patcher named ‘drawing’. The message box that sends a
bang to the receive object named ‘reset’ allows you to clear the lcd display and reset the
counter objects in the drawing subpatch.

Tutorial 53 More Patcher Storage

355

The object called autopattr in the lower-right corner has a number of message box objects
connected to it that contain different example settings for the drawing controls.

The autopattr object has much of the same functionality as pattrhub, allowing you to send and
query values from objects exposed to the pattr system within a patch.

Tutorial 53 More Patcher Storage

356

• Unlock the patch and select one of the drawing interface controls other than the toggle
object (i.e. the rslider or number box objects at the top). Under the Object menu, select
Name….

Note that our four ‘control’ objects in the patch have names (‘range’, ‘angle’, ‘offset’, and
‘desynch’). If you create a group of user-interface objects and give them names, an autopattr
object will automatically expose those objects into the pattr system, exactly as if they had pattr
objects all bound to them individually. In this sense, autopattr also functions as a set of pattr
objects, allowing you to include multiple objects for patcher storage with one object.

The default behavior of the autopattr object is to expose only named user interface objects in a
patcher when the object is created. The autoname attribute to autopattr, when set to 1, will
automatically name all user interface objects in the patcher and expose them to the pattr
system. Like the Max preset object, the autopattr object will exclude any objects connected to
its second inlet or, if objects are connected to its left inlet, allow you to only specify a few
objects explicitly for naming and binding into the pattr system.

Because the autopattr object combines many of the features of the pattr and pattrhub objects, it
allows you to rapidly include large numbers of Max objects with a single object, while
allowing you to query and set their data through the same object.

Tutorial 53 More Patcher Storage

357

Storing States

• Click on the message box labeled ‘clientwindow’ attached to the pattrstorage object. The
window that appears gives you a tabulated list of all the pattr objects exposed in the patch,
as well as some information about them. Change the settings in some of the control
objects for the drawing machine and watch the window update to reflect the new settings.

The pattrstorage object provides a number of features for high-level parameter management.
The client window shows the names of all the objects exposed to pattr in the patch (including
those controlled by pattr objects or autopattr objects). It shows their current values in the last
column. The middle two columns show the recall priority and interpolation mode for the
objects, which can be changed to fine-tune the order in which the objects are recalled to a
saved state, and how objects respond to an in-between state (see below).

• Click on the message box labeled ‘storagewindow’ attached to the pattrstorage. A window
with a list of the control objects should appear. Create a setting you like with the four
objects that control the drawing machine. Once you have a setting you’re happy with,
click the button object attached to the int object above the pattrstorage. This will send the
message store 1 to pattrstorage.

Sending a store message, followed by an integer value, tells pattrstorage to capture the current
state of all exposed objects and save them as a preset (or state) in a numbered slot inside the
object. The slot will then receive a column in the storage window, showing us the number of
the slot as a column header, with all the appropriate values tabulated below it. State 0 is a
special slot that allows you to save a state temporarily without having it save in a file (see
below).

Tutorial 53 More Patcher Storage

358

• Now that you’ve saved a preset, change one of the pattr-exposed objects. Watch how the
storage window responds.

When you make a change to an object that deviates from the most recently saved or recalled
preset slot, the value for the appropriate object becomes italicized in the storage window.

• Create some more preset states by making changes to the control objects, then storing
their settings in pattrstorage by incrementing the number box attached to the int object and
clicking the button. Note that if you re-use a slot number (e.g. you save a state under slot
2, then save again) the old settings are overwritten.

Note that once you have more than one state saved in the pattrstorage, the most recent state is
shown in boldface, while older states are set in a normal typeface.

• Click on the number box labeled ‘recall a preset’. Set it to one of the values you’ve stored.
The user interface objects should recall to their saved values, and the slot column
representing that state in the storage window should go to boldface.

Sending an integer to pattrstorage will recall the slot corresponding to that integer.
Attempting to recall a slot that has never been saved is harmless, and pattrstorage will ignore
you.

Tutorial 53 More Patcher Storage

359

Interpolation

• Click on the floating-point number box labeled ‘interpolate between presets’. Type in a
value between two adjacent slot you’ve saved (e.g. if you’ve saved a state under 1 and a
state under 2, type 1.5). The pattr-exposed objects will go to an interpolated value
between those two states. Drag with the mouse in the number box so that you effect a
smooth transition from one state to another. The controlled objects will smoothly
interpolate as well.

Floating point values sent to pattrstorage will interpolate values between saved states. Non-
adjacent states can be interpolated as well, using the message fade a b n, where a and b are the
slot numbers and n is a value from 0.0 (100% a) to 1.0 (100% b). Note that interpolated values
will italicize both of the participating slot in the storage window.

Saving and Loading Files

• After you’ve saved a couple of states into preset slots, click on the message box labeled
‘write’ attached to the pattrstorage object. A file save dialog will appear, asking you to save
a file with the suffix .xml. Save the file somewhere and open it in any application that can
read text files (Max, for example). Look over the file.

The pattrstorage object reads and writes collections of preset states as XML (extended markup
language) files, a format which uses nested tags as identifiers for different types of data in a
file.

An example XML file from our Tutorial patch could look something like this:
<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<pattrstorage name = "u518000001">

<slot number = "1">
<pattr name = "angle" value = “60.” />
<pattr name = “desynch” value = “7” />
<pattr name = “offset” value = “0.” />
<pattr name = “range” value = “50 100" />

</slot>
<slot number = “2”>

<pattr name = “angle” value = “33.5” />
<pattr name = “desynch” value = “39” />
<pattr name = “offset” value = “8.8” />
<pattr name = “range” value = “50 147" />

</slot>
</pattrstorage>

Tutorial 53 More Patcher Storage

360

The first relevant tag that encompasses all our data defines the information as belonging the a
pattrstorage object. The <pattrstorage> tag also tells us the name of the pattrstorage argument,
which is randomly generated unless we set it explicitly with an argument to the object.

Between the <pattrstorage> tags, we have <slot> tags defining the saved states. Note that slot
0 is not saved in the file. Within each <slot>, we have <pattr> tags that list the exposed
objects by name and list their preset value for that state.

• Make a change to the numerical data in one of the slots and save the XML file. Be careful
to preserve the quotation marks around the values. Read it back into the patch by clicking
the ‘read’ message box and selecting the file. The storage window will update to the new
preset value, which you can then recall.

Because XML is a straightforward, human-readable format, it’s quite simple to edit preset
files saved using pattrstorage. We could even use a piece of software (e.g. Max) to
automatically generate preset files for our patches once they’ve been set up to use pattrstorage!

Summary

The autopattr object functions as a hybrid of the pattr and pattrhub objects, allowing you to
automatically expose multiple user interface objects to the pattr system in one easy step. The
object allows you to automatically name objects for inclusion (through the autoname attribute),
as well as explicitly include or exclude objects through the first two outlets, respectively. The
pattrstorage object allows you to view the current settings of pattr-exposed objects, as well as
save states of settings into numerical slots (through the save message) and recall them (by
sending an integer to the object). Furthermore, you can interpolate between preset slots, as
well as save and recall your saved states in an easy-to-read XML format.

See Also

autopattr freeing pattr users from the burdens of thought
pattr patcher-specific named data wrapper
pattrhub make your pattrobjects work for you!
pattrstorage view/modify pattr data, store and recall presets
patcher Create a subpatch within a patch
preset Store and recall the settings of other objects
lcd Draw graphics in a Patcher windo

Index

361

-, 27
!=, 56
$

in a message box, 107
%, 27
&&, 58
*, 27
/, 27
\, 110
||, 58
+, 27
<, 56
<=, 56
==, 56
>, 56
>=, 56
About numbers, 15
abstraction, 118
accompaniment patch, 137, 175
accum, 92
action, timeline, 215
active, 210
active window, 114
address

of a funbuff, 119
Align, 11
All Notes Off message, 65, 263
All Windows Active, 114
and, 58
animation, 226

in a Patcher window, 233
anti-aliased text, 258
append, 109

received in a message object, 110
application written in Max, 255
argument, 17

changeable argument, 107

arithmetic operators, 26
array

funbuff, 119
table, 146

ASCII, 82
Assistance, 116
Automatic actions, 208
b, 24
background window, 114
backslash, 110
bang, 13

received in a table, 155
bang means, 13
bangbang, 24
beats per minute, 143
bendin, 62
bendout, 62
bent patch cords, 75
blinking text, 262
both numbers are not zero, 58
bouncing, graphic effect, 241
bpatcher, 238
button, 13
button appearance, 257
C function, 201
C programming language, 198
capture, 161
change, 60
changeable argument, 107
characters, special, 261
chord

playing parallel chords, 52
storing, 187
transmitting, 107, 134

chord-playing patch, 187
clicktrack patch, 211
clocker, 140
closebang, 208

Index

362

coll, 185
editing the contents of, 186

collective, 255
color of a sprite, 229
color of an object, 80
combining comparisons, 58
comma

in a message box, 107
command

from the Mac keyboard, 82
Command key bindings, 261
comment, 20

clicking on, 78
comparison, 56

using to make decisions, 57, 67, 72
conditional if/then/else statement, 200
control change

ctlin, 63
ctlout, 63

controller numbers, 63
counter, 140
ctlin, 63
ctlout, 63
cyclical pattern, creating, 94
data structure, 185
Data structures, 185
decimal number, 15
decrementing, 93
default value, 18
del, 96
delay, 97
Delay lines;, 96
delaying

a bang, 97
numbers, 96

Designing the user interface, 255
detonate, 244
device list from MIDI, 263
dial, 53
documenting patches, 122

Doing math in Max;, 26
dollar sign, 107
echo, 96
encapsulation, 245
error dialog

stack overflow, 142
exponent, 251
exponential curve, 201, 207
expr, 198
expr and if, 198
external clock

synchronizing Max to, 144
extra precision pitch bend data, 168
fade-in, creating, 140
filtering MIDI messages, 162
filtering out a specific number, 63
float, 15, 89
floating point division, 91
flush, 49
follow, 174
font characteristics, 20
formatting MIDI messages, 162
fpic, 77, 257
frequency distribution, histogram, 155
funbuff, 119
gate, 68, 248
Gates and switches;, 67
Get Info…

table, 147
Ggate, 67
global variable, 105
grace note patch, 125
graphic, 226
Graphics, 226
graphics file, 77, 230
Graphics in a Patcher, 233
graphics window, 226
grow bar, 20, 80
Gswitch, 68
hexadecimal number

displaying, 36

Index

363

hide objects in a bpatcher, 239
Hide On Lock, 76
Histo, 155
hslider, 53
if, 200
imitation, 101
imovie, 233
improvising patch, 157
incrementing, 92, 140, 164
inlet

Assistance description, 116
inlet object, 115
int, 15, 89
interface design, 255
inverting pitch values, 55
invisible objects and patch cords, 76
iter, 134
js methods and scheduling, 321
key, 82
key commands, 246
keyboard commands, 82

entering numbers, 85
keyboard onscreen, 256
keyboard slider, 51
keyup, 86
kslider, 51
label mode for umenu, 262
labeling with text, 262
lcd, 234
led, 210
limiting numbers to a specific range, 53,

82
limiting the speed of a stream of

numbers, 64
line, 141
linear map of ranges, inverse, 132
linear mapping of ranges, 130
list

combining numbers into, 135, 187
convert to a series of numbers, 134
convert to separate numbers, 135

in left inlet, 28
loadbang, 208

suppressing, 261
locking and unlocking a Patcher

window, 9
looping, 93
makenote, 47
Making decisions with comparisons;, 56
Managing messages;, 107
Managing note data;, 47
Managing raw MIDI data, 160
mapping a range of numbers, 130
menu bar

changing, 260
menu object, 190

Label mode, 238
menubar, 261
message

append arguments at the end of, 109
prepend one before another, 109
reversing order of two numbers, 136

message box, 107
message object, 8, 107
messenger, 214
metro, 17
MIDI

connecting MIDI equipment, 6
port, specifying, 160

MIDI channel
filtering by, 163
specifying, 44

MIDI device list, 256, 263
MIDI Enable/Disable, 210
MIDI file, 172
MIDI note name

displaying, 36
MIDI objects, 42
midiformat, 162
midiin, 160
midiout, 160
midiparse, 162

Index

364

modulo, 26
monitor, monochrome, 229
Monk, Thelonius effect, 125
More MIDI ins and outs;, 62
mouse control, 51, 204
mouse status and location, 205
mousefilter, 204
MouseState, 205
mtr, 180
multiplier, of a slider or dial, 31
Multi-track sequencing, 180
multi-tracking, 180
New Object List, 10
notein, 43
note-off message

filtering out, 49
supplying, 47

noteout, 43
number, 15

typing on the Mac keyboard, 33, 85
Number box, 15, 33
Number boxes;, 33
Number groups, 134
numkey, 85
objects

aligning, 11
creating, 10
size of, adjusting, 20, 80
using a patch as an object, 118

octave
parallel octave patch, 44
random octave transpositions, 131

offset, of a slider or dial, 31
omni mode, 44
one or both numbers are not zero, 58
onscreen control, 51
or, 58
ornamentation patch, 126
outlet

Assistance description, 116

outlet object, 115
Overdrive, 94
pack, 135
palette of graphic editing tools, 151
panic command, 263
PassPct patch, 128
Paste Picture, 77
patch cord

receive messages without, 105
segmented or straight, 75
send messages without, 105

patcher object, 114
pcontrol, 209
periodicity, 94
pgmin, 63
pgmout, 63
picture

clicking on, 78
in a patch, 77

pipe, 96
pitch bend

14-bit, xbendin, 168
14-bit, xbendout, 168
bendin, 62
bendout, 62
controlled with velocity, 62

pitch-velocity grid, 205
pointer, 164
poly, 227
port

changing dynamically, 161
specifying in Max, 160

port, setting for MIDI objects, 263
pow() function, 251
prepend, 109
preset, 193
print, 8
priority of a sprite, 230
probability, 124, 155
Probability tables, 155
program change

Index

365

pgmin, 63
pgmout, 63

QuickTime movie, 213, 233
r, 105
random, 98
random note patch, 99
random number

without repetitions, 242
range

of a slider, 30
receive, 105
recorder patch, 180
recording in non-real time, 252
rect, 227
recursion, 121, 142
relational operators, 56
repeated note patch, 92, 196
rhythm

analyzing, 156
creating with delay, 99, 137

Right-to-left order;, 23
ritard, following a performer, 177
route, 70
routing

messages to different destinations, 57,
67, 82

s, 105
Saying, 7
scheduling and js methods, 321
score of Max messages, 213
score-reading object, 174
Screen aesthetics;, 75
script for menubar, 261
scripting

basic overview, 265
bring to front, 286
command syntax, 267
connecting objects, 268
creating objects, 272
deleting objects, 278
disconnecting objects, 268

hiding objects, 285
moving objects, 283
offset messages, 284
replacing objects, 279
resizing objects, 283
response to mouse clicks, 286
send to back, 286
sending messages, 270
showing objects, 285
using the coll object, 281

scroll bars, hiding, 260
scrolling text, 240
Segmented Patch Cords, 75
select, 57
semicolon

in a message, 111
send, 105
send and receive;, 105
Sending and receiving MIDI notes;, 42
seq, 171
seq and follow, 171
sequencer of Max messages, 213
sequencing, 171

detonate, 244
multi-track, 180
saving a sequence, 172
single track, 171

set
received in a message object, 108
received in a slider, 31

settings of objects, storing, 193
shapes in a graphics window, 227
sharp sign, 124
Show On Lock, 76
Sierpinski, Waclaw, 236
sine wave, drawing, 201
size

of objects, grow bar, 20
slider, 30

multiplier, 31
offset, 31

Index

366

setting the range of, 30
Sliders and dials;, 51
speedlim, 64
split, 82
sprite, 227

priority, 230
stack overflow, 142
standalone application, 255
step recording, 244
stopwatch patch, 208
storing

settings of objects, 193
Storing numbers;, 89
stripnote, 49
stuck notes, avoiding, 47
subpatch, 114, 118

argument to, 123
opening the window of, 208
view contents of, 238

swap, 136
switch, 69
sxformat, 166
synchronizing, 144
synthesizer

switching sounds, 63, 192
system exclusive, 165

end byte, 167
status byte, 167

system exclusive programming, 167
t, 24
table, 146

Don’ t Save, 148
entering values as text, 150, 163
linked to an etable editor, 223
Save with Patcher, 148
saving in a file, 148
stepping through values, 164
storing numbers in, 151
viewing, 146

Table window
creating, 150

editing, 151
tempo, 143
Test 1— Printing;, 22
Test 3— Comparisons and decisions, 72
Test 4— Imitating a performance;, 101
Test 5— Probability object, 128
text, blinking, 262
The patcher object;, 114
The table object, 146
thispatcher, 259
thisTimeline, 217
thresh, 187
tiCmd, 215
time elapsed between events, 86, 248
timed progression of numbers, 140
timed repetition, 18
timeline, 213

editing events, 223
Timeline of Max messages, 213
timer, 86
tiOut, 216
title bar, hiding, 260
TogEdge, 158
toggle, 19
toggle and comment;, 19
toggle mode for ubutton, 257
track in a timeline, 214
transposed note, turning off, 84, 118, 174
transposing, 44, 118
trigger, 24
triggering, 26
truncation, 15
ubutton, 78, 257
umenu, 262
unpack, 135
urn, 242
user interface, 255
Using metro, 17
Using the Macintosh keyboard;, 82
Using the slider;, 30
Using timers, 140

Index

367

uslider, 53
v, 105
value, 105
variable, 89
variable, global, 105
varispeed playback of sequences, 244

weighted randomness, 124
window size and placement, 259
Your argument;, 123
Your object, 118

	Introduction
	Tutorial 1: Saying “Hello!”
	Tutorial 2: The bang Message
	Tutorial 3: About Numbers
	Tutorial 4: Using metro
	Tutorial 5: toggle and comment
	Tutorial 6: Test 1—Printing
	Tutorial 7: Right-to-left Order
	Tutorial 8: Doing Math in Max
	Tutorial 9: Using the slider
	Tutorial 10: Number Boxes
	Tutorial 11: Test 2—Temperature Conversion
	Tutorial 12: Using MIDI Data
	Tutorial 13: Sending and Receiving MIDI Notes
	Tutorial 14: Sliders and Dials
	Tutorial 15: Making Decisions with Comparisons
	Tutorial 16: More MIDI Ins and Outs
	Tutorial 17: Gates and Switches
	Tutorial 18: Test 3—Comparisons and Decisions
	Tutorial 19: Screen Aesthetics
	Tutorial 20: Using the Computer Keyboard
	Tutorial 21: Storing Numbers
	Tutorial 22: Delay Lines
	Tutorial 23: Test 4—Imitating a Performance
	Tutorial 24: send and receive
	Tutorial 25: Managing Messages
	Tutorial 26: The patcher Object
	Tutorial 27: Your Object
	Tutorial 28: Your Argument
	Tutorial 29: Test 5—Probability Abstraction
	Tutorial 30: Number Groups
	Tutorial 31: Using Timers
	Tutorial 32: The table Object
	Tutorial 33: Probability Tables
	Tutorial 34: Managing Raw MIDI Data
	Tutorial 35: seq and follow
	Tutorial 36: Multi-track Sequencing
	Tutorial 37: Data Structures
	Tutorial 38: exp and if
	Tutorial 39: Mouse Control
	Tutorial 40: Automatic Actions
	Tutorial 41: Timeline of Max Messages
	Tutorial 42: Graphics
	Tutorial 43: Graphics in a Patcher
	Tutorial 44: Sequencing with detonate
	Tutorial 45: Designing the User Interface
	Tutorial 46: Basic Scripting
	Tutorial 47: Advanced Scripting
	Tutorial 48: Basic JavaScript
	Tutorial 49: Scripting and Custom Methods in JavaScript
	Tutorial 50: Tasks, Arguments and Global Objects in Javascript
	Tutorial 51: Designing User Interfaces in JavaScript
	Tutorial 52: Patcher Storage
	Tutorial 53: More Patcher Storage
	Index

